

JN 137350

TABLE OF CONTENTS

Introduction and Background3
Scope of Analysis5
Methodology5
Hydrology5
Drainage Area (A)5
Precipitation Loss/Runoff Coefficient (C)6
Time of Concentration (T _c)6
Rainfall Intensity (I)6
Hydraulics6
Gutter Hydraulics7
Inlet Hydraulics7
Pipe Hydraulics8
Modeling Approach9
ResultS
Inlet Hydraulics
Storm Drain Main and Lateral Hydraulics10
Conclusion
Decleration of responsible charges12
LIST OF FIGURES
Figure 1: Project Vicinity Map4

LIST OF EQUATIONS

Equation 1 : Rational Method	5
Equation 2 : Gutter Spread	
Equation 3: Curb Inlets in Sump When Operating as an Orifice	7
Equation 4 : Curb Inlets on Grade	8
Equation 5 : Bernoulli's Equation	8

APPENDICES

Appendix A – FEMA Documents

Appendix B - Excerpts from County of San Diego Hydrology Manual & Other Sources

Appendix C – Hydrology Analysis Input and Output

Appendix D – Inlet Results Input and Output

INTRODUCTION AND BACKGROUND

The City of Encinitas is proposing to install street improvements, new inlets, and storm drain infrastructure underneath Coast Highway 101. The entirety of the project will span from A street to La Costa Avenue. The project will be divided into phases that are detailed in Appendix G. This report will provide hydrologic and hydraulic analysis for Phase 1B: roadway improvements from Marcheta to Basil Street, Phase1C: storm drain improvements from 'A' Street to Marcheta Street (Hydrologic analysis only), and Phase 1E: El Portal Storm Drain Extension.

The El Portal North County Transit District pedestrian undercrossing that is to be constructed by T.Y. Lin is incorporated into this study. Flow from the undercrossing is pumped into a biofiltration basin which outlets into Michael Baker's proposed storm drain. This flow is accounted for in the hydraulic calculations presented in this report.

A FEMA Federal Insurance Rate Map is included in Appendix A. The FIRM map details the project limits in proximity to Special Flood Hazard Areas subject to inundation by the 1% annual chance flood.

The proposed storm drain mains and laterals in Phases 1C & 1E will convey runoff to existing storm drain systems that will discharge to Moonlight beach.

FIGURE 1: PROJECT VICINITY MAP

SCOPE OF ANALYSIS

The scope of this report includes:

- Determination of the 50- and 100-year storm peak flow rates for Phases 1C & 1E. The 50-year peak flow rate was developed to analyze the affects of a lower than standards storm through the proposed drainage infrastructure.
- 2. Determination of street hydraulic characteristics as a result of proposed infrastructure,
- 3. Determination of inlet and pipe hydraulic characteristics as a result of proposed infrastructure.

The hydrologic and hydraulic analyses derived within this report are intentionally limited to the newly proposed storm drain inlets and associated laterals that ultimately discharging to Moonlight beach. Separate reports for proposed improvements related to other phases of the project will be provided at a later date.

Refer to Modeling Approach section below for further discussion.

METHODOLOGY

HYDROLOGY

Project flow rates have been determined using the "Rational Method" as specified within the Section 3 of the County of San Diego Hydrology Manual (June 2003) for watersheds of less than 0.5 square mile. Rational method flow rates and their associated time of concentration were confluenced and routed through the storm drain using AES – Hydrowin 2013 (Advanced Engineering Solutions) to produce a total peak flow rate at each node in the system.

Q = CIA

Equation 1: Rational Method

Where,

Q = Peak Discharge, (cubic feet per second)

C = Runoff Coefficient, (unit-less)

I = Average Rainfall Intensity, (inches per hour)

A = Drainage Area, (acres)

Drainage Area (A)

The drainage areas for each storm drain system analyzed in this report were developed using two-foot topography obtained from the San Diego Geographic Information Source (SanGIS). Aerial imaging, Google Earth Street View, and field verification (MBI 3-26-2020 and 4-10-2020) were used in conjunction with the

City o	f Encinitas	Coast Highwa	y 101 H	ydrology	& H	ydraulio	c

topography to develop drainage areas. Refer to the Hydrologic Work Map, found in Appendix C of this report, for a graphical representation of the project drainage areas.

Precipitation Loss/Runoff Coefficient (C)

Runoff coefficients were determined from Table 3-1 found in the County of San Diego Hydrology Manual (Hydrology Manual). Aerial photography and the hydrologic soil type were used to determine the appropriate land use classification detailed in table 3-1 of the San Diego County Hydrology Manual. A General Commercial land use designation is applied to drainage areas west of the 101 and the corresponding runoff coefficient from table 3-1 is used. Drainage areas east of the 101 are roughly 65% impervious and the corresponding 24.0 DU/A or less runoff coefficient from table 3-1 is applied.

Land use information from aerial photography was used to determine the number of dwelling units per acre and correlated with the hydrologic soil type. The City of Encinitas' Engineering Manual assumes type D soil for all areas per Section 6.202. A summary of these runoff coefficients can be found in Appendix C.

Time of Concentration (T_c)

The time of concentration (T_c) is the sum of the initial time (T_i) and travel time (T_t) , as identified in section 3 of the Hydrology Manual. The initial time of concentration is based on Table 3-2 of the Hydrology Manual.

 T_t is computed by dividing the gutter or street flow path in a particular drainage subarea by the computed flow velocity for the segment in question. Flow velocity is conservatively based on a 0.5-foot depth (full gutter flow) condition in Figure 3-6 of the Hydrology Manual. A minimum Tc of 5 minutes was used per the Hydrology Manual. Calculations can be found in Appendix C.

Rainfall Intensity (I)

This study considers the 50 and 100-year storm intensities based upon Figure 3-2 and the Isopluvial maps found in Appendix B of the hydrology manual.

HYDRAULICS

Hydraulic analyses for each new inlet and storm drain lateral have been performed using Hydraflow Storm Sewers. Gutter, inlet, and pipe hydraulics have been developed and analyzed internally within the Hydraflow model. Flow rates have been manually input into the program at each inlet for 50-year and 100-year analyses. Street flow and spread lengths will allow a travel lane for emergency vehicles.

Gutter Hydraulics

Hydraflow uses trial and error with a modification of Manning's Equation to determine depth and spread of gutter flow.

$$D = \left(\frac{Q * n}{K_C * Z * \sqrt{S}}\right)^{0.375}$$

Equation 2 : Gutter Spread

Where,

D = Depth of flow in gutter, (ft)

Q = Flow in gutter, (cfs)

Kc = 0.56 (empirically derived)

n = Manning's roughness coefficient

Z = Reciprocal of the cross slope

S = Longitudinal gutter slope

Inlet Hydraulics

Inlet sizing calculations for sump and on grade inlets have been performed in accordance with the San Diego Hydrology Manual. Hydraflow storm sewers is used to calculate gutter spread. On-grade inlets will collect 100% of the Q50 and Q100 with no bypass. Proposed inlets are located at low points or points along the roadway profile where cross/longitudinal slope is changing.

$$Q = C_0 * h * L * (2gd)^{1/2}$$

Equation 3: Curb Inlets in Sump When Operating as an Orifice

Where,

Q = inlet capacity, (CFS)

Co = 0.67 (empirically derived coefficient).

h= throat height of curb opening (ft.)

L = length of curb opening, (ft.)

g = 32.2 (gravitational constant)

d = Flow depth at face of curb, (0.5 ft.)

$$\frac{Q}{L_T} = 0.7 * (a + y)^{3/2}$$

Equation 4: Curb Inlets on Grade

Where,

Q = inlet capacity, (CFS)

L_T = length of clear opening of inlet for total interception (ft)

a = depth of depression of curb at inlet (0.33 ft)

y= depth of flow approaching the curb inlet (ft.)

Pipe Hydraulics

Pipe hydraulic calculations have been determined within Hydraflow Storm Sewers and are based upon the Standard Step Method. This method uses a combination of Bernoulli's energy equation and Manning's equation, in an iterative process between upstream and downstream ends, to determine hydraulic profiles. The method includes head losses due to friction and other minor losses, based on user defined loss coefficients found within the County Hydraulic Manual 2014.

$$\frac{{V_1}^2}{2*g} + Z_1 + Y_1 = \frac{{V_2}^2}{2*g} + Z_2 + Y_2 + HL$$

Equation 5: Bernoulli's Equation

Where,

V = Velocity, (FPS)

g = gravitational acceleration constant, in (ft/s²)

Z = Invert elevation, (ft)

Y = Difference between the hydraulic grade line and invert elevation, (ft)

HL = Head losses, (ft)

City of Encinitas(Coast Highway 101 Hydrology & Hydraulic
--------------------	---

Modeling Approach

Proposed laterals and inlets have been modeled in Hydraflow Storm Sewers to determine the hydraulic grade line (HGL) under post-development 50- and 100-year conditions. The improvements detailed in T.Y. Lin's study "El Portal Bicycle/Pedestrian Undercrossing Final Drainage Report" are incorporated into the hydraulic model.

A biofiltration basin that was designed by T.Y. Lin is located immediately south of the proposed El Portal roundabout. This basin will be connected to the Phase 1E storm drain per this plan set. T.Y. Lin's undercrossing will pump approximately 0.9 cfs into the southerly biofiltration basin. This additional flow is incorporated into the Hydraulic model. The lateral storm drains that connect to the biofiltration basin and the El Portal roundabout curb inlet are flat with a slope that is less than 0.50%.

RESULTS

Inlet Hydraulics

Appendix D summarizes the sump and on grade inlet calculations that are in accordance with standards detailed by the San Diego County Hydrology Manual. Refer to Appendix D for complete output reports generated by Hydraflow Storm Sewers. All proposed inlets in-sag are sized to capture the entire 100-YR flow rate with ponding limited to 6" or less. Proposed on-grade inlets have been designed to capture 100% of the 100-year peak flow rate with no bypass flow.

Storm Drain Main and Lateral Hydraulics

The HGLs for all storm drain systems are beneath the finished surface for the peak 50-year flow rate.

The HGLs for the storm drain improvements from A street to Marcheta street is beneath the finished surface for the 100-year peak flow rate.

The HGL for the El Portal storm drain extension is out of the ground along the upstream extent of the proposed pipe during the 100-year peak flow rate. This occurs because the storm drain reach that connects to the El Portal intersection and existing sump has a slope that is less than 0.5% and the pipe is bucking grade.

The Hydraflow Storm Sewers Modeling results and corresponding storm drain main/lateral profiles are presented in Appendices E and F.

CONCLUSION

The 50- and 100-year project site peak flow rates have been developed for each proposed inlet using the Rational Method. This approach is consistent with local methodology and appropriate given the relatively small tributary drainage areas.

Proposed inlets and storm drain laterals have been hydraulically analyzed using project site peak flow rates to determine spread width, capture capacity, and hydraulic grade line within the laterals. In all cases, spread width for the 100-year event is under 20 feet, which meets the criteria of Section 2.2.1. of the County's Drainage Design Manual. In all cases, newly proposed on-grade inlets capture 100% of the 100-year approach flow.

The storm drain system from A Street to Marcheta Street has been designed to convey the 50- and 100-year peak flow rate while maintaining an HGL that is under the finished surface. This storm drain system will be constructed with the Streetscape Improvements from 'A' Street to Marcheta Street at a later date.

The El Portal storm drain extension system will be able to convey the 50-year peak flow rate while maintaining the HGL under the finished surface. The 100-year peak flow rate HGL is completely under the finished surface expect for the upstream portion of the pipe that connects to the El Portal intersection and existing localized sump. This localized low point along the El Portal intersection is going to remain the same as in the existing condition but the benefit provided by this project is that proposed storm drain system will be able to convey this existing flooding to the Moonlight Beach outfall.

Newly proposed storm drain infrastructure improvements will reduce flooding along North Coast Highway 101 for all storm events, as compared to pre-development conditions. The most benefit will be realized during smaller, more frequent storm events.

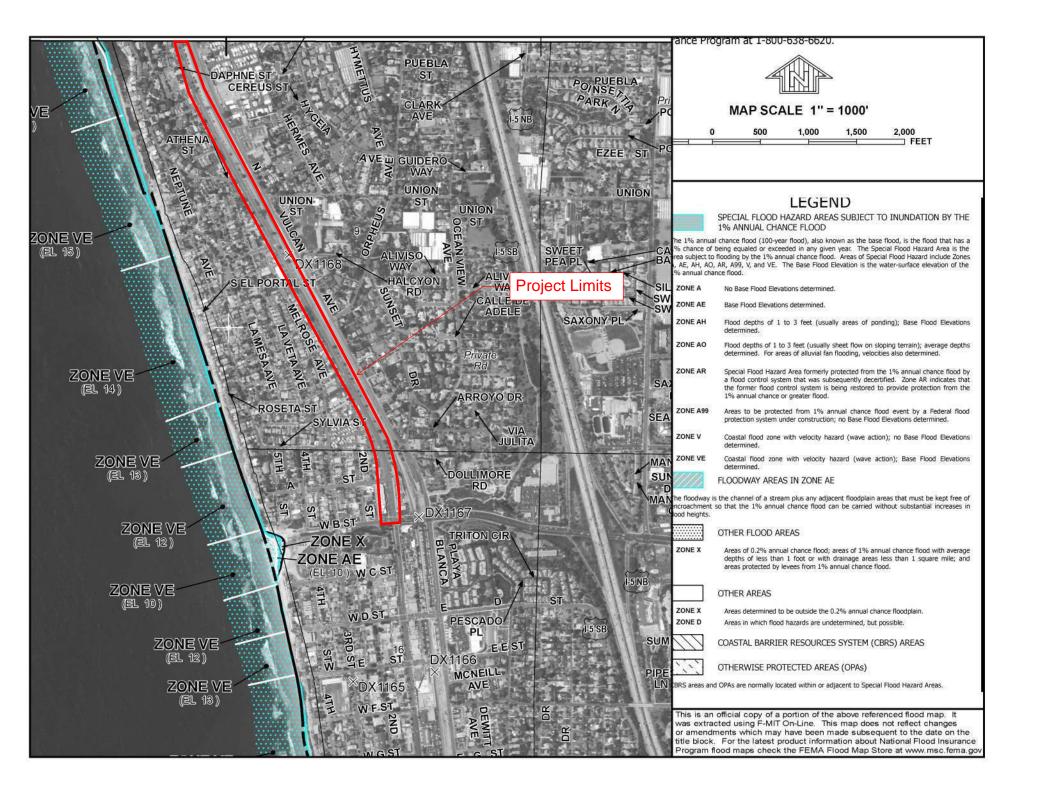
DECLERATION OF RESPONSIBLE CHARGES

I, hereby declare that I am the Civil Engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with current design.

I understand that the check of project drawings and specifications by the County of San Diego is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for the project design.

8-24-2020

Christopher Leary RCE 87309 Date



Appendix A – FEMA Documents

Included within this appendix: FEMA FIRM Panels

FEMA FIRMs

endix B - Excerpts from County of San Diego Hydrology Manual & Other Sources

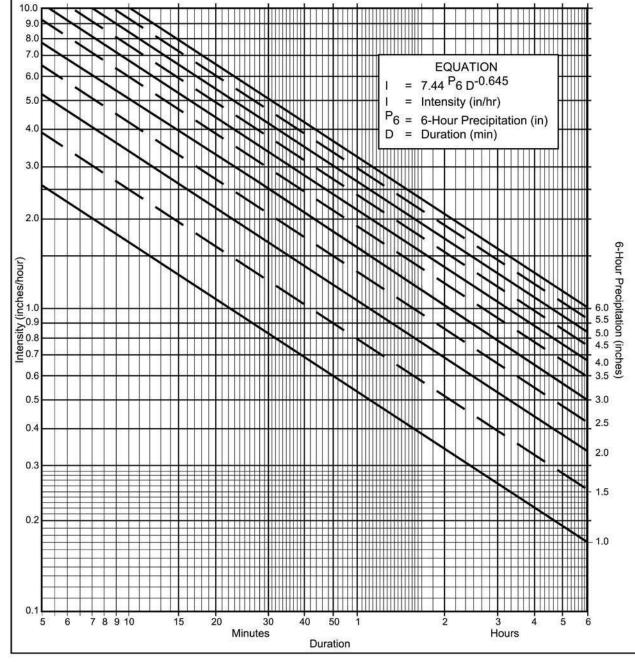
Included within this appendix:

County of San Diego Hydrology Manual Excerpts Runoff Coefficient Table 3-1 Intensity Duration Design Chart Figure 3-2 Isopluvial Maps

County of San Diego Hydrology Manual Excerpts San Diego County Hydrology Manual Date: June 2003

Section: Page:

6 of 26


Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS

Lar	nd Use		Ru	noff Coefficient '	'C"	
		_		Soil	Туре	
NRCS Elements	County Elements	% IMPER.	A	В	C	D
Undisturbed Natural Terrain (Natural)	Permanent Open Space	0*	0.20	0.25	0.30	0.35
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	0.60
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	50	0.55	0.58	0.60	0.63
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	0.66	0.67	0.69	0.71
High Density Residential (HDR)	Residential, 43.0 DU/A or less	80	0.76	0.77	0.78	0.79
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	0.76	0.77	0.78	0.79
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	90	0.83	0.84	0.84	0.85
Commercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85
Commercial/Industrial (General I.)	General Industrial	95	0.87	0.87	0.87	0.87

^{*}The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

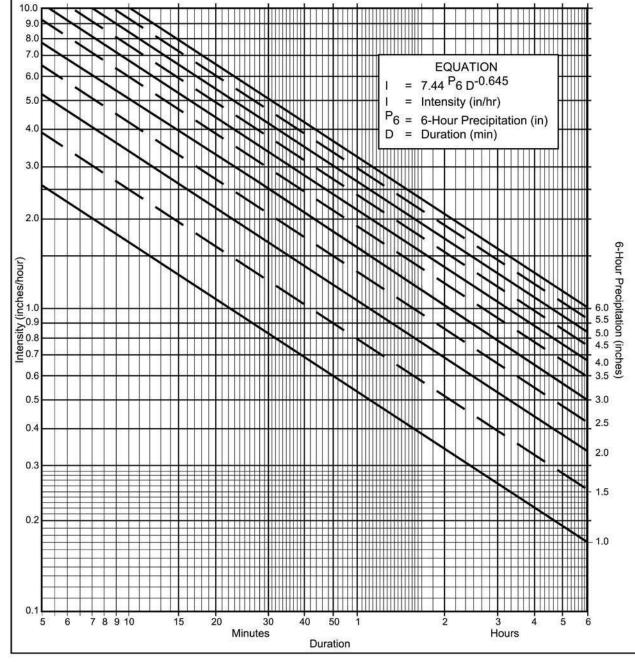
DU/A = dwelling units per acre

NRCS = National Resources Conservation Service

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicable to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:


(a) Selected frequency ______ year

(b)
$$P_6 = 2.2$$
 in., $P_{24} = 3.75$, $\frac{P_6}{P_{24}} = 59$ %⁽²⁾

(c) Adjusted $P_6^{(2)} = 2.2$ in.

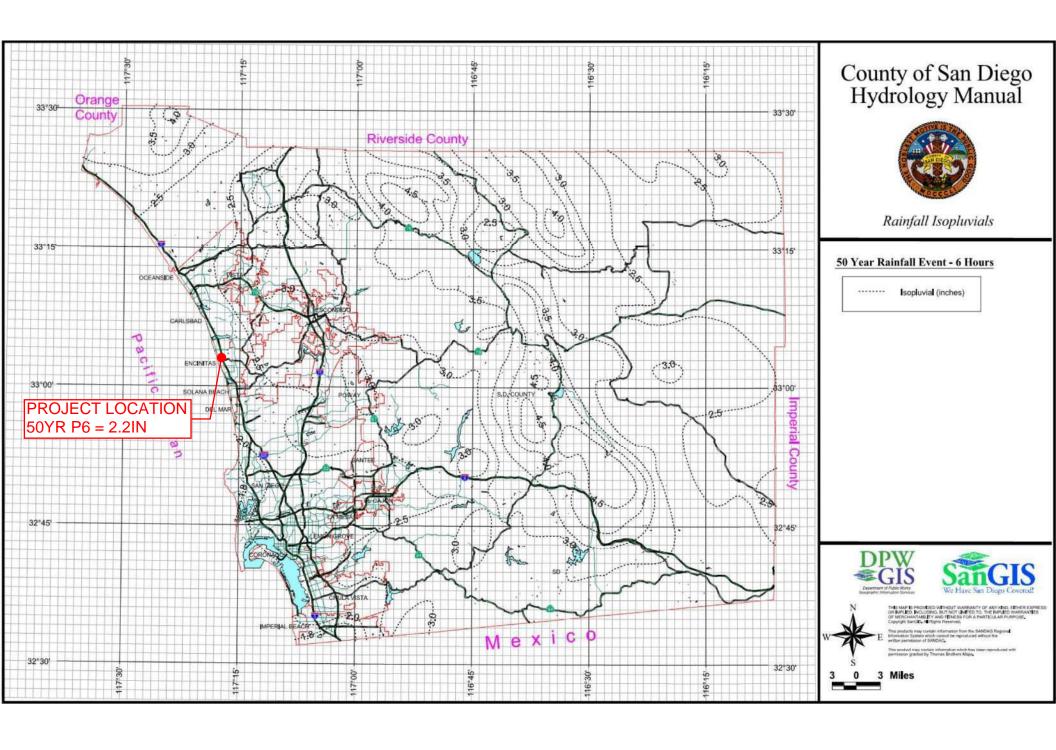
Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

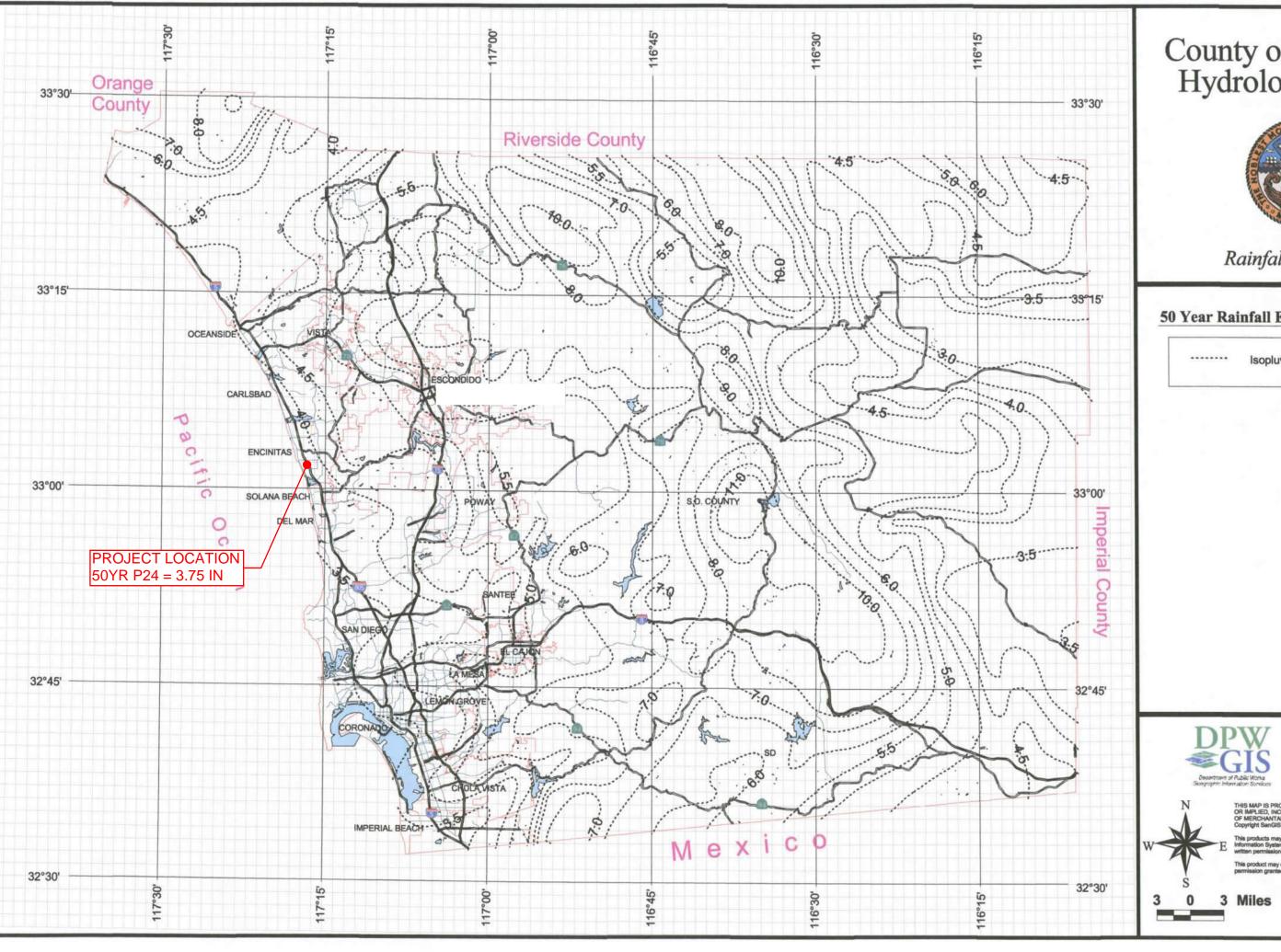
P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	- 1	1		1	1	1	1	1	1		- 1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicable to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:


(a) Selected frequency _____ 100_ year

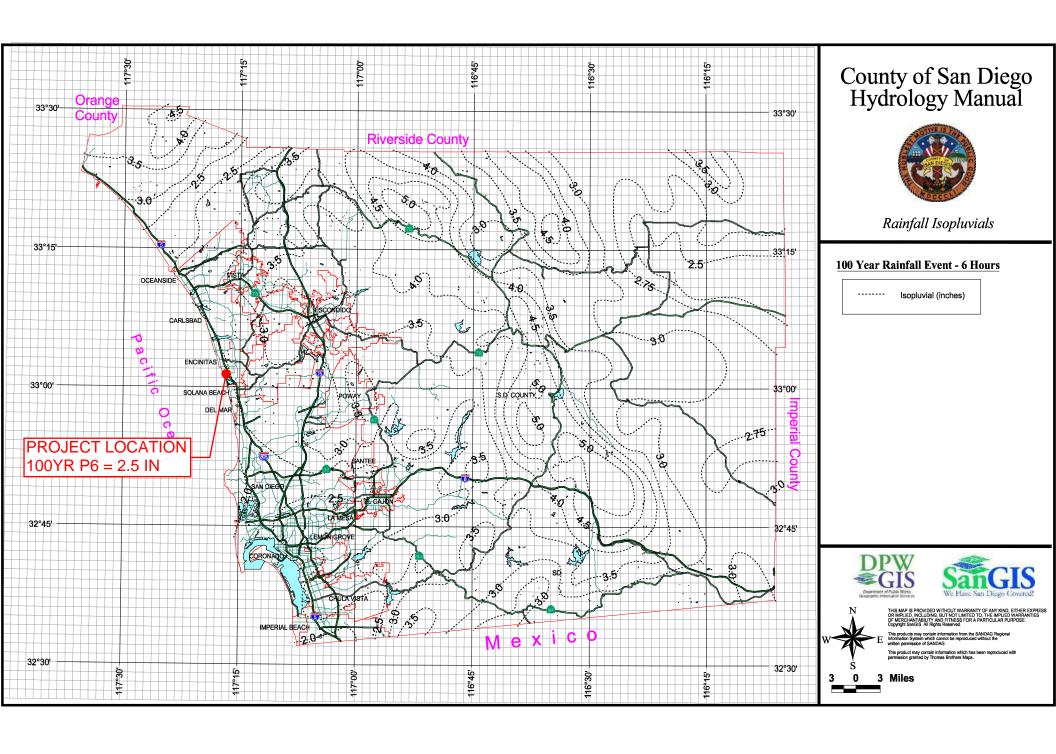

(b)
$$P_6 = \underline{2.5}$$
 in., $P_{24} = \underline{4.0}$, $P_{24} = \underline{625}$ %⁽²⁾

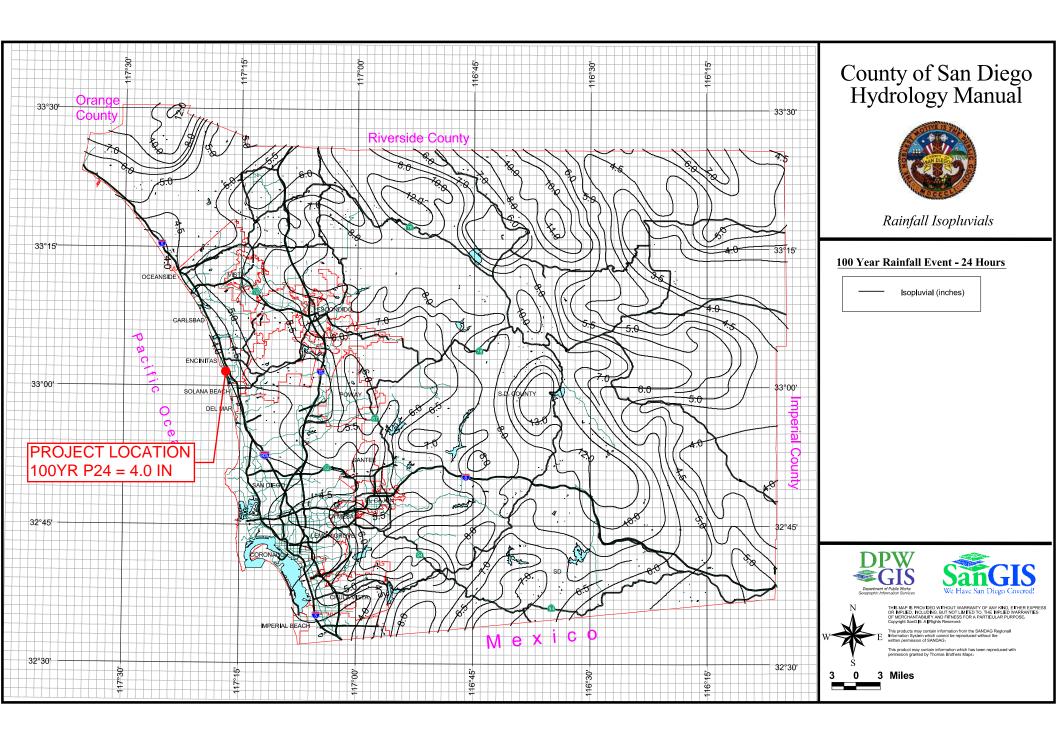
(c) Adjusted $P_6^{(2)} = 2.5$ in.

Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

P6	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Duration	- 1	1		1	1	1	1	1	1		- 1
5	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
50	0.60	0.90	1.19	1.49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
60	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

County of San Diego Hydrology Manual




Rainfall Isopluvials

50 Year Rainfall Event - 24 Hours

Isopluvial (inches)

Castion	2
Section.	3
D	12 - 626
Page:	12 of 26
	Section: Page:

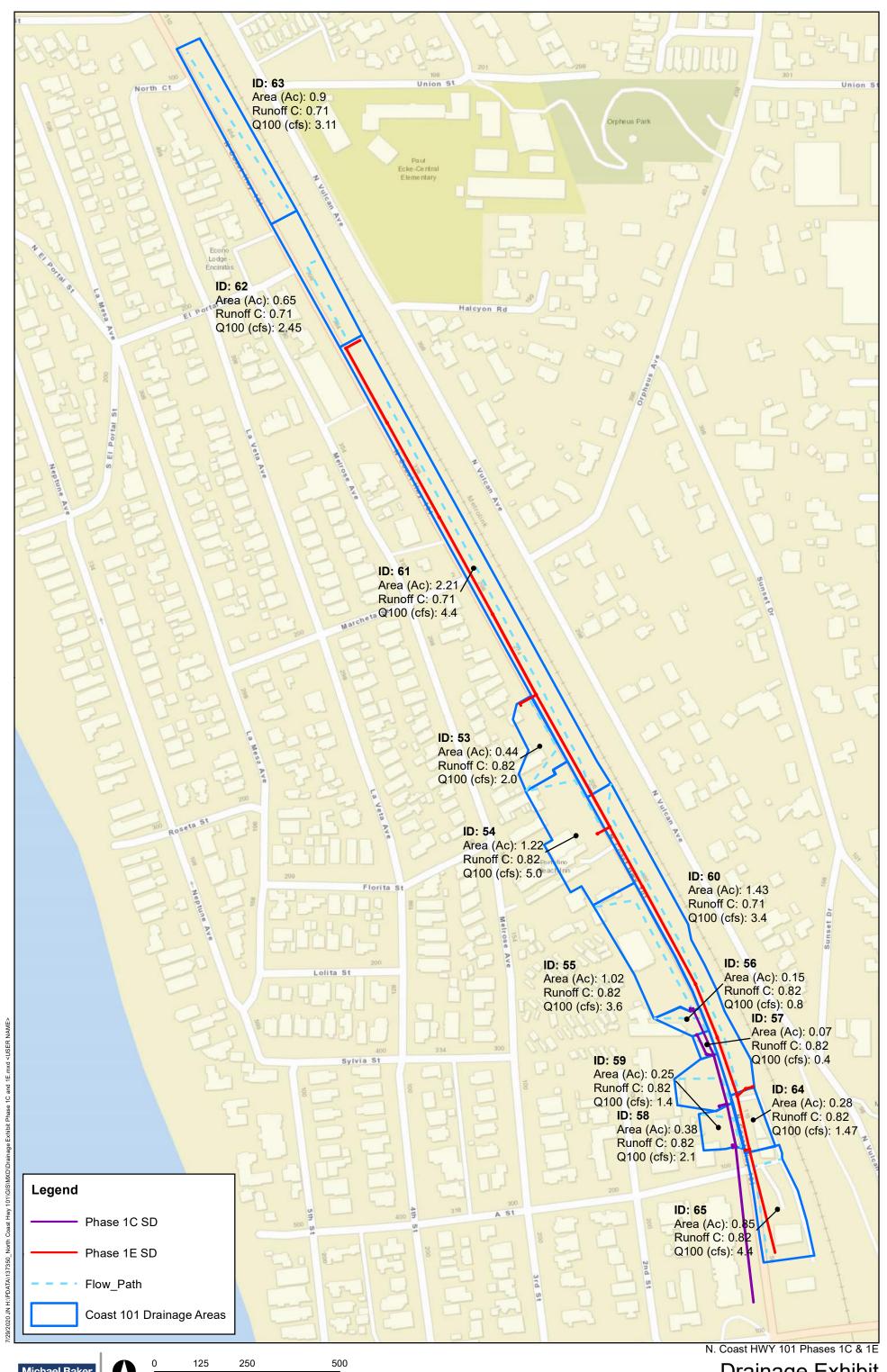
Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres.

Table 3-2 provides limits of the length (Maximum Length (L_M)) of sheet flow to be used in hydrology studies. Initial T_i values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study.

Table 3-2 $\begin{aligned} & \text{MAXIMUM OVERLAND FLOW LENGTH } (L_{\text{M}}) \\ & \text{\& INITIAL TIME OF CONCENTRATION } (T_{i}) \end{aligned}$

a number concentration (1)													
Element*	Element* DU/		5%	1%		2%		3%		5%		10%	
	Acre	L _M	T _i	L_{M}	T_{i}	L_{M}	T _i	L_{M}	T _i	L_{M}	T _i	L_{M}	Ti
Natural		50	13.2	70	12.5	85	10.9	100	10.3	100	8.7	100	6.9
LDR	1	50	12.2	70	11.5	85	10.0	100	9.5	100	8.0	100	6.4
LDR	2	50	11.3	70	10.5	85	9.2	100	8.8	100	7.4	100	5.8
LDR	2.9	50	10.7	70	10.0	85	8.8	95	8.1	100	7.0	100	5.6
MDR	4.3	50	10.2	70	9.6	80	8.1	95	7.8	100	6.7	100	5.3
MDR	7.3	50	9.2	65	8.4	80	7.4	95	7.0	100	6.0	100	4.8
MDR	10.9	50	8.7	65	7.9	80	6.9	90	6.4	100	5.7	100	4.5
MDR	14.5	50	8.2	65	7.4	80	6.5	90	6.0	100	5.4	100	4.3
HDR	24	50	6.7	65	6.1	75	5.1	90	4.9	95	4.3	100	3.5
HDR	43	50	5.3	65	4.7	75	4.0	85	3.8	95	3.4	100	2.7
N. Com		50	5.3	60	4.5	75	4.0	85	3.8	95	3.4	100	2.7
G. Com		50	4.7	60	4.1	75	3.6	85	3.4	90	2.9	100	2.4
O.P./Com		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
Limited I.		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
General I.		50	3.7	60	3.2	70	2.7	80	2.6	90	2.3	100	1.9

^{*}See Table 3-1 for more detailed description



Appendix C – Hydrology Analysis Input and Output

Included within this appendix:

Drainage Work Map 50 & 100 Year Peak Flow Calculations Inlet Tc Calculations Runoff Coefficient Inputs

Drainage Work Map

Feet

50 & 100 Year Peak Flow Rate

On-Site Drainage Subarea	Inlet Type	Area (ac)	Area (ac)		Tc (min)		50 Year			100 Year	
ID#			Table 3-1			P6	I (in/hr) ²	Q ₅₀ (cfs)	P6	I (in/hr) ²	Q ₁₀₀ (cfs)
Encintias 53	On-Grade	0.44	N. Commerical	0.79	6.0	2.2	5.18	1.8	2.5	5.88	2.0
Encintias 54	In-Sag	1.22	G. Commerical	0.82	7.8	2.2	4.35	4.4	2.5	4.94	5.0
Encintias 55	On-Grade	1.02	G. Commerical	0.82	9.8	2.2	3.75	3.1	2.5	4.26	3.6
Encintias 56	In-Sag	0.15	G. Commerical	0.82	5.0	2.2	5.80	0.7	2.5	6.59	8.0
Encintias 57	In-Sag	0.07	G. Commerical	0.82	5.0	2.2	5.80	0.3	2.5	6.59	0.4
Encintias 58	In-Sag	0.38	G. Commerical	0.82	5.0	2.2	5.80	1.8	2.5	6.59	2.1
Encintias 59	On-Grade	0.25	G. Commerical	0.82	5.0	2.2	5.80	1.2	2.5	6.59	1.4
Encintias 60	In-Sag	1.42	24.0 Du/A or less	0.71	14.2	2.2	2.95	3.0	2.5	3.35	3.4
Encintias 61	In-Sag	2.21	24.0 Du/A or less	0.71	18.5	2.2	2.49	3.9	2.5	2.83	4.4
Encinitas 62	In-Sag	0.65	24.0 Du/A or less	0.71	7.0	2.2	4.68	2.2	2.5	5.32	2.5
Encinitas 63	On-Grade	0.90	24.0 Du/A or less	0.71	8.0	2.2	4.28	2.7	2.5	4.86	3.1
Encinitas 64	On-Grade	0.28	G. Commerical	0.82	5.2	2.2	5.64	1.3	2.5	6.41	1.5
Encinitas 65	On-Grade	0.85	G. Commerical	0.82	5.3	2.2	5.60	3.9	2.5	6.36	4.4

¹ Per Table 3-1 of SDCHM

² Per Figure 3-2 of SDCHM

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ****************
* COAST HIGHWAY 101 - PHASE 1C
* MARCHETA STREET TO BASIL STREET
* MICHAEL BAKER INTERNATIONAL
*****************************
 FILE NAME: C:\USERS\X\02\1.DAT
 TIME/DATE OF STUDY: 12:18 07/27/2020
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 50.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                  HIKE FACTOR
NO. (FT)
            (FT)
                  SIDE / SIDE/ WAY (FT) (FT) (FT)
30.0
            20.0
                  GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

```
COAST HIGHWAY 101 - PHASE 1C
BASIL STREET TO MARHETA STREET
| MICHAEL BAKER INTERNATIONAL
USER SPECIFY HYDROLOGY FOR SUB BASIN 55
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
******************************
 FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 9.80 RAIN INTENSITY(INCH/HOUR) = 4.27
 TOTAL AREA(ACRES) = 1.02 TOTAL RUNOFF(CFS) = 3.10
******************************
 FLOW PROCESS FROM NODE 55.00 TO NODE 55.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 57.30 DOWNSTREAM(FEET) = 57.20
 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.65
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.10
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) =
                                    9.81
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                   55.50 =
                                            5.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 55.50 TO NODE 57.50 IS CODE = 31
   >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                          57.23 DOWNSTREAM(FEET) = 55.91
 FLOW LENGTH(FEET) = 131.10 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.18
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.10
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 10.23
```

```
LONGEST FLOWPATH FROM NODE 0.00 TO NODE 57.50 = 136.10 FEET.
****************************
 FLOW PROCESS FROM NODE
                  57.50 TO NODE
                             57.50 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 56
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*********************************
 FLOW PROCESS FROM NODE 56.00 TO NODE
                               56.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.00 RAIN INTENSITY(INCH/HOUR) = 6.59
 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) = 0.70
*******************************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.25 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                         56.50 DOWNSTREAM(FEET) = 55.90
 FLOW LENGTH(FEET) = 60.53 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.38
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.70
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 5.30
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 57.25 = 196.63 FEET.
*******************************
 FLOW PROCESS FROM NODE 57.25 TO NODE 57.25 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.30
 RAINFALL INTENSITY(INCH/HR) = 6.34
 TOTAL STREAM AREA(ACRES) = 0.15
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.70
```

```
------
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 57
 REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
********************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 57.00 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
_____
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.00 RAIN INTENSITY(INCH/HOUR) = 6.59
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
                                           0.30
**********************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 57.25 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
 RAINFALL INTENSITY(INCH/HR) = 6.59
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.30
 ** CONFLUENCE DATA **
                  Tc
 STREAM RUNOFF
                        INTENSITY
                                    AREA
         (CFS) (MIN.) (INCH/HOUR)
0.70 5.30 6.345
0.30 5.00 6.587
 NUMBER
                         (INCH/HOUR)
                                    (ACRE)
    1
                                      0.15
                                      0.07
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
         0.96 5.00
0.99 5.30
    1
                         6.587
                          6.345
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 0.99 Tc(MIN.) = 5.30
 TOTAL AREA(ACRES) = 0.2
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 57.25 =
                                               196.63 FEET.
**********************************
```

```
FLOW PROCESS FROM NODE 57.25 TO NODE 57.50 IS CODE = 31
    -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) =
                           56.00 DOWNSTREAM(FEET) = 55.89
 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.34
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.99
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 5.37
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                   57.50 = 211.63 FEET.
*******************************
 FLOW PROCESS FROM NODE 57.50 TO NODE 57.50 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
         RUNOFF TC INTENSITY
 STREAM
                                 AREA
         (CFS) (MIN.) (INCH/HOUR)
0.99 5.37 6.288
 NUMBER
                       (INCH/HOUR)
                                 (ACRE)
                                  0.22
 LONGEST FLOWPATH FROM NODE
                       0.00 TO NODE
                                   57.50 = 211.63 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
         RUNOFF TC INTENSITY AREA
 STREAM
 NUMBER
         (CFS)
                (MIN.)
                       (INCH/HOUR) (ACRE)
                10.23
          3.10
                        4.150
                                1.02
 LONGEST FLOWPATH FROM NODE
                       0.00 TO NODE 57.50 = 136.10 FEET.
 ** PEAK FLOW RATE TABLE **
                      INTENSITY
 STREAM RUNOFF Tc
             (MIN.)
        (CFS)
 NUMBER
                      (INCH/HOUR)
                5.37
                         6.288
    1
         2.62
    2
          3.75
             10.23
                         4.150
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.75 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                   1.2
****************************
 FLOW PROCESS FROM NODE 57.50 TO NODE
                                 58.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) = 55.87 DOWNSTREAM(FEET) = 54.52
```

```
FLOW LENGTH(FEET) = 133.25 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.47
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.75
 PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) = 10.64
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 58.50 = 344.88 FEET.
****************************
 FLOW PROCESS FROM NODE 58.50 TO NODE 58.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.64
 RAINFALL INTENSITY(INCH/HR) = 4.05
 TOTAL STREAM AREA(ACRES) = 1.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.75
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINTIAS 58
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
****************************
 FLOW PROCESS FROM NODE 58.00 TO NODE
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.00 RAIN INTENSITY(INCH/HOUR) = 6.59
 TOTAL AREA(ACRES) = 0.38 TOTAL RUNOFF(CFS) =
                                        1.80
*****************************
 FLOW PROCESS FROM NODE 58.00 TO NODE 58.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)
______
 ELEVATION DATA: UPSTREAM(FEET) =
                          66.27 DOWNSTREAM(FEET) = 66.10
 FLOW LENGTH(FEET) = 17.20 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.43
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.80
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 5.06
```

FLOW PROCESS FROM NODE 58.50 TO NODE 58.50 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.06

RAINFALL INTENSITY(INCH/HR) = 6.53

TOTAL STREAM AREA(ACRES) = 0.38

PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.80

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	3.75	10.64	4.047	1.24
2	1.80	5.06	6.532	0.38

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	RUNOFF	Tc	INTENSITY
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)
1	3.59	5.06	6.532
2	4.87	10.64	4.047

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 4.87 Tc(MIN.) = 10.64

TOTAL AREA(ACRES) = 1.6

LONGEST FLOWPATH FROM NODE 0.00 TO NODE 58.50 = 344.88 FEET.

FLOW PROCESS FROM NODE 58.50 TO NODE 59.50 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

ELEVATION DATA: UPSTREAM(FEET) = 54.48 DOWNSTREAM(FEET) = 53.36

FLOW LENGTH(FEET) = 112.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000

DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.6 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 5.84

ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 4.87

PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 10.96

LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 = 456.88 FEET.

```
**********************************
 FLOW PROCESS FROM NODE
                 59.50 TO NODE
                              59.50 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.96
 RAINFALL INTENSITY(INCH/HR) = 3.97
 TOTAL STREAM AREA(ACRES) = 1.62
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                           4.87
+-----
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 59
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE
                 59.00 TO NODE
                              59.00 IS CODE = 7
-----
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 10.00 RAIN INTENSITY(INCH/HOUR) = 4.21
 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) =
                                     1.20
*******************************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 53.50 DOWNSTREAM(FEET) = 53.30
 FLOW LENGTH(FEET) = 6.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.04
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.20
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                10.02
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 = 23.20 FEET.
********************************
 FLOW PROCESS FROM NODE 59.50 TO NODE 59.50 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.02
 RAINFALL INTENSITY(INCH/HR) = 4.21
 TOTAL STREAM AREA(ACRES) = 0.25
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.20
 ** CONFLUENCE DATA **
        RUNOFF
                  Tc
 STREAM
                        INTENSITY
                                   AREA
        (CFS) (MIN.)
4.87 10.96
 NUMBER
                        (INCH/HOUR)
                                    (ACRE)
                         3.970
                                      1.62
    1
    2
           1.20 10.02
                          4.208
                                      0.25
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (I
5.79 10.02
 NUMBER
                        (INCH/HOUR)
    1
                         4.208
         6.00 10.96
                         3.970
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.00 Tc(MIN.) = 10.96
TOTAL AREA(ACRES) = 1.9
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 = 456.88 FEET.
******************************
 FLOW PROCESS FROM NODE 59.50 TO NODE
                                 59.50 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                            53.32 DOWNSTREAM(FEET) = 44.10
 FLOW LENGTH(FEET) = 425.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.20
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.00
 PIPE TRAVEL TIME(MIN.) = 0.86 Tc(MIN.) = 11.82
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 = 881.88 FEET.
______
 END OF STUDY SUMMARY:
                       1.9 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES) =
                                       11.82
 PEAK FLOW RATE(CFS) =
                        6.00
______
______
```

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ****************
* COAST HIGHWAY 101 - PHASE 1E
* MARCHETA STREET TO BASIL STREET
* MICHAEL BAKER INTERNATIONAL
*****************************
 FILE NAME: C:\USERS\X\01\1.DAT
 TIME/DATE OF STUDY: 12:20 07/27/2020
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 50.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                  HIKE FACTOR
NO. (FT)
            (FT)
                  SIDE / SIDE/ WAY (FT) (FT) (FT)
30.0
            20.0
                  GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

```
COAST HIGHWAY 101 - PHASE 1E STORM DRAIN
BASIL STREET TO MARHETA STREET
| THIS MODEL INCLUDES FLOW FROM STUBS 24+50 AND 28+50
+-----
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 63
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
******************************
 FLOW PROCESS FROM NODE
                 63.00 TO NODE 63.00 IS CODE =
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 8.00 RAIN INTENSITY(INCH/HOUR) = 4.86
 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 2.70
*******************************
 FLOW PROCESS FROM NODE 63.00 TO NODE 62.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 60.60 DOWNSTREAM(FEET) = 60.00
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.27
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.70
 PIPE TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) =
                                 8.97
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                 62.50 =
                                         190.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 62.50 TO NODE 62.50 IS CODE =
 .....
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.97
 RAINFALL INTENSITY(INCH/HR) = 4.52
 TOTAL STREAM AREA(ACRES) = 0.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.70
 -----
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 62
```

```
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE
                    62.00 TO NODE
                                62.00 IS CODE =
-----
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 7.00 RAIN INTENSITY(INCH/HOUR) = 5.30
 TOTAL AREA(ACRES) = 0.65 TOTAL RUNOFF(CFS) =
                                        2.20
*****************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                          59.99 DOWNSTREAM(FEET) = 59.98
 FLOW LENGTH(FEET) = 2.45 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.40
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.20
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.01
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 62.50 = 2.45 FEET.
***********************************
 FLOW PROCESS FROM NODE 62.50 TO NODE 62.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.01
 RAINFALL INTENSITY(INCH/HR) = 5.30
 TOTAL STREAM AREA(ACRES) = 0.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.20
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                Tc INTENSITY
                                 AREA
        (CFS) (MIN.) (IN 2.70 8.97 2.20 7.01
 NUMBER
                       (INCH/HOUR)
                                 (ACRE)
                                   0.90
    1
                       4.518
                         5.296
                                   0.65
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                     INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
4.31 7.01 5.296
4.58 8.97 4.518
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.58 Tc(MIN.) = 8.97
 TOTAL AREA(ACRÈS) = 1.5
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 62.50 = 190.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 62.50 TO NODE
                               61.50 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 59.97 DOWNSTREAM(FEET) = 59.20
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.65
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                4.58
 PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 10.11
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 61.50 =
                                          440.00 FEET.
******************************
                  61.50 TO NODE
 FLOW PROCESS FROM NODE
                               61.50 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.11
 RAINFALL INTENSITY(INCH/HR) = 4.18
 TOTAL STREAM AREA(ACRES) = 1.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.58
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 61
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE 61.00 TO NODE
                               61.00 \text{ IS CODE} = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
```

```
USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 18.50 RAIN INTENSITY(INCH/HOUR) = 2.83
 TOTAL AREA(ACRES) = 2.21 TOTAL RUNOFF(CFS) = 3.90
*****************************
 FLOW PROCESS FROM NODE 61.00 TO NODE 61.50 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                            59.26 DOWNSTREAM(FEET) = 59.20
 FLOW LENGTH(FEET) = 21.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.43
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.90
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 18.60
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 61.50 = 23.45 FEET.
********************************
 FLOW PROCESS FROM NODE 61.50 TO NODE 61.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.60
 RAINFALL INTENSITY(INCH/HR) = 2.82
 TOTAL STREAM AREA(ACRES) = 2.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.90
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
 NUMBER
        (CFS)
                (MIN.) (INCH/HOUR)
                                   (ACRE)
          4.58 10.11 4.182
    1
                                     1.55
          3.90 18.60
                          2.823
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
6.70 10.11 4.182
 NUMBER
    1
    2
       6.99 18.60
                       2.823
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.99 Tc(MIN.) = 18.60
 TOTAL AREA(ACRES) = 3.8
```

```
LONGEST FLOWPATH FROM NODE 0.00 TO NODE 61.50 = 440.00 FEET.
***************************
 FLOW PROCESS FROM NODE 61.50 TO NODE
                              53.50 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 59.12 DOWNSTREAM(FEET) = 55.98
 FLOW LENGTH(FEET) = 1063.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.99
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
            6.99
 PIPE TRAVEL TIME(MIN.) = 4.44 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 53.50 = 1503.00 FEET.
***************************
 FLOW PROCESS FROM NODE
                 53.50 TO NODE
                             53.50 IS CODE = 1
------
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 23.04
 RAINFALL INTENSITY(INCH/HR) = 2.46
 TOTAL STREAM AREA(ACRES) = 3.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.99
-----+
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 53
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE REPORT
*******************************
 FLOW PROCESS FROM NODE 53.00 TO NODE
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 6.00 RAIN INTENSITY(INCH/HOUR) = 5.86
 TOTAL AREA(ACRES) = 0.44 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 53.00 TO NODE 53.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 66.90 DOWNSTREAM(FEET) = 66.43
 FLOW LENGTH(FEET) = 47.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.44
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.80
 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 6.18
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                       53.50 = 70.45 FEET.
*********************************
 FLOW PROCESS FROM NODE 53.50 TO NODE 53.50 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.18
 RAINFALL INTENSITY(INCH/HR) =
                          5.75
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                1.80
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
         (CFS)
 NUMBER
                 (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
          6.99 23.04
    1
                         2.458
                                     3.76
    2
                          5.748
          1.80 6.18
                                       0.44
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
          4.79
                 6.18
    1
                        5.748
          7.76 23.04
                          2.458
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.76 Tc(MIN.) = 23.04
TOTAL AREA(ACRES) = 4.2
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 53.50 = 1503.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 53.50 TO NODE 54.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 55.97 DOWNSTREAM(FEET) = 54.77
```

```
FLOW LENGTH(FEET) = 406.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.05
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.76
 PIPE TRAVEL TIME(MIN.) = 1.67 Tc(MIN.) =
                                  24.71
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                 54.50 = 1909.00 FEET.
*******************************
 FLOW PROCESS FROM NODE
                  54.50 TO NODE 54.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 24.71
 RAINFALL INTENSITY(INCH/HR) = 2.35
 TOTAL STREAM AREA(ACRES) = 4.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.76
   ------
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 54
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 6.30 RAIN INTENSITY(INCH/HOUR) = 5.67
 TOTAL AREA(ACRES) = 1.22 TOTAL RUNOFF(CFS) =
                                       5.00
********************************
 FLOW PROCESS FROM NODE 54.00 TO NODE
                              54.50 IS CODE = 31
    >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 67.68 DOWNSTREAM(FEET) = 67.64
 FLOW LENGTH(FEET) = 34.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.56
 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 5.00
 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 6.52
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 54.50 = 104.45 FEET.
```

```
**********************************
 FLOW PROCESS FROM NODE 54.50 TO NODE 54.50 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.52
 RAINFALL INTENSITY(INCH/HR) = 5.55
 TOTAL STREAM AREA(ACRES) = 1.22
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               5.00
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
                                   AREA
                        (INCH/HOUR)
                                    (ACRE)
          7.76 24.71 2.350
5.00 6.52 5.550
    1
                                    4.20
    2
                                     1.22
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
        RUNOFF TC INTENSITY
 STREAM
        (CFS) (MIN.) (INCH/HOUR)
 NUMBER
                 6.52
          8.29
                         5.550
    1
          9.88
                 24.71
                          2.350
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.88 Tc(MIN.) = 24.71
 TOTAL AREA(ACRES) = 5.4
 LONGEST FLOWPATH FROM NODE
                       0.00 \text{ TO NODE} 54.50 = 1909.00 \text{ FEET.}
********************************
 FLOW PROCESS FROM NODE 54.50 TO NODE 60.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 54.75 DOWNSTREAM(FEET) = 52.37
 FLOW LENGTH(FEET) = 800.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.36
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               9.88
 PIPE TRAVEL TIME(MIN.) = 3.06 Tc(MIN.) = 27.77
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 60.50 = 2709.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 60.50 TO NODE 60.50 IS CODE =
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.77
 RAINFALL INTENSITY(INCH/HR) = 2.18
 TOTAL STREAM AREA(ACRES) = 5.42
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.88
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 60
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
**********************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 14.20 RAIN INTENSITY(INCH/HOUR) = 3.36
 TOTAL AREA(ACRES) = 1.43 TOTAL RUNOFF(CFS) = 3.00
*******************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 60.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 71.25 DOWNSTREAM(FEET) = 70.98
 FLOW LENGTH(FEET) = 27.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.12
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.00
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
                                   14.29
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                  60.50 =
                                            131.45 FEET.
**********************************
 FLOW PROCESS FROM NODE 60.50 TO NODE 60.50 IS CODE = 1
   >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.29
```

```
TOTAL STREAM AREA(ACRES) =
                         1.43
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                3.00
 ** CONFLUENCE DATA **
 STREAM
        RUNOFF
                  Tc INTENSITY
                                     AREA
 NUMBER
         (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
           9.88
                 27.77
                                       5.42
                           2.180
    2
           3.00 14.29
                           3.346
                                       1.43
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
          9.43 14.29
    1
                           3.346
    2
          11.83 27.77
                           2.180
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 11.83 Tc(MIN.) = 27.77
 TOTAL AREA(ACRES) =
                     6.8
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                     60.50 = 2709.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 60.50 TO NODE 64.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.36 DOWNSTREAM(FEET) = 51.93
 FLOW LENGTH(FEET) = 143.10 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.49
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.83
 PIPE TRAVEL TIME(MIN.) = 0.53 Tc(MIN.) =
                                      28.30
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                      64.50 = 2852.10 FEET.
************************************
 FLOW PROCESS FROM NODE 64.50 TO NODE 64.50 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 28.30
 RAINFALL INTENSITY(INCH/HR) = 2.15
 TOTAL STREAM AREA(ACRES) = 6.85
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                11.83
```

RAINFALL INTENSITY(INCH/HR) = 3.35

```
USER SPECIFY HYDROLOOGY FROM SUB BASIN ENCINITAS 64
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
**********************************
 FLOW PROCESS FROM NODE 64.00 TO NODE 64.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.20 RAIN INTENSITY(INCH/HOUR) = 6.42
 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE 64.00 TO NODE 64.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 68.80 DOWNSTREAM(FEET) = 68.72
 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.05
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.30
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 5.23
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 64.50 = 139.45 FEET.
****************************
 FLOW PROCESS FROM NODE
                  64.50 TO NODE
                               64.50 \text{ IS CODE} = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.23
 RAINFALL INTENSITY(INCH/HR) = 6.40
 TOTAL STREAM AREA(ACRES) = 0.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                Tc INTENSITY
 STREAM
        RUNOFF
                                 AREA
              (MIN.)
 NUMBER
        (CFS)
                      (INCH/HOUR)
                                 (ACRE)
                      2.153
                                 6.85
        11.83 28.30
    1
                       6.396
         1.30 5.23
    2
                                  0.28
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
    BER (CFS) (MIN.) (INCH/HOUR)
1 5.28 5.23 6.396
2 12.27 28.30 2.153
 NUMBER
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 12.27 Tc(MIN.) = 28.30
TOTAL AREA(ACRES) = 7.1
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 64.50 = 2852.10 FEET.
**********************************
 FLOW PROCESS FROM NODE 64.50 TO NODE 65.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 51.92 DOWNSTREAM(FEET) = 51.06
 FLOW LENGTH(FEET) = 285.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.51
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.27
 PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 29.35
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 65.50 = 3137.10 FEET.
***********************************
 FLOW PROCESS FROM NODE 65.50 TO NODE 65.50 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 29.35
 RAINFALL INTENSITY(INCH/HR) = 2.10
 TOTAL STREAM AREA(ACRES) = 7.13
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.27
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 65
REFERENCE HYDROLOGY CALCULATIONS AND DRAIANGE EXHIBIT
*********************************
 FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 7
```

```
>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.30 RAIN INTENSITY(INCH/HOUR) = 6.34
 TOTAL AREA(ACRES) = 0.85 TOTAL RUNOFF(CFS) =
                                       3.90
****************************
 FLOW PROCESS FROM NODE 65.50 TO NODE 65.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.30
 RAINFALL INTENSITY(INCH/HR) = 6.34
 TOTAL STREAM AREA(ACRES) = 0.85
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            3.90
 ** CONFLUENCE DATA **
 STREAM
       RUNOFF
                 Tc
                      INTENSITY
                                 AREA
              (MIN.)
                      (INCH/HOUR)
 NUMBER
        (CFS)
                                (ACRE)
        12.27
               29.35
                                  7.13
    1
                        2.103
    2
          3.90
                        6.344
               5.30
                                  0.85
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                     INTENSITY
 NUMBER
               (MIN.)
        (CFS)
                     (INCH/HOUR)
         7.97
               5.30
                       6.344
    1
         13.56
               29.35
                       2.103
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 13.56 Tc(MIN.) = 29.35
 TOTAL AREA(ACRES) = 8.0
 LONGEST FLOWPATH FROM NODE
                      0.00 TO NODE
                                 65.50 =
                                          3137.10 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                     8.0 \text{ TC(MIN.)} = 29.35
 PEAK FLOW RATE(CFS) =
                     13.56
______
______
```

END OF RATIONAL METHOD ANALYSIS

1

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ****************
* COAST HIGHWAY 101 - PHASE 1C
* MARCHETA STREET TO BASIL STREET
* MICHAEL BAKER INTERNATIONAL
*****************************
 FILE NAME: C:\USERS\0\02\1.DAT
 TIME/DATE OF STUDY: 10:31 07/27/2020
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                  HIKE FACTOR
NO. (FT)
            (FT)
                  SIDE / SIDE/ WAY (FT) (FT) (FT)
30.0
            20.0
                  GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

```
COAST HIGHWAY 101 - PHASE 1C
BASIL STREET TO MARHETA STREET
| MICHAEL BAKER INTERNATIONAL
USER SPECIFY HYDROLOGY FOR SUB BASIN 55
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
******************************
 FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 9.80 RAIN INTENSITY(INCH/HOUR) = 4.27
 TOTAL AREA(ACRES) = 1.02 TOTAL RUNOFF(CFS) = 3.60
*****************************
 FLOW PROCESS FROM NODE 55.00 TO NODE 55.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 57.30 DOWNSTREAM(FEET) = 57.20
 FLOW LENGTH(FEET) = 5.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.93
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.60
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) =
                                    9.81
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                   55.50 =
                                            5.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 55.50 TO NODE 57.50 IS CODE = 31
   .....
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                          57.23 DOWNSTREAM(FEET) = 55.91
 FLOW LENGTH(FEET) = 131.10 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.40
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.60
 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 10.22
```

```
LONGEST FLOWPATH FROM NODE 0.00 TO NODE 57.50 = 136.10 FEET.
****************************
 FLOW PROCESS FROM NODE
                  57.50 TO NODE
                             57.50 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 56
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*********************************
 FLOW PROCESS FROM NODE 56.00 TO NODE
                               56.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.00 RAIN INTENSITY(INCH/HOUR) = 6.59
 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.25 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                         56.50 DOWNSTREAM(FEET) = 55.90
 FLOW LENGTH(FEET) = 60.53 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.51
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.80
 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 5.29
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 57.25 = 196.63 FEET.
*******************************
 FLOW PROCESS FROM NODE 57.25 TO NODE 57.25 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.29
 RAINFALL INTENSITY(INCH/HR) = 6.35
 TOTAL STREAM AREA(ACRES) = 0.15
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            0.80
```

```
------
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 57
 REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
********************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 57.00 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
_____
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.00 RAIN INTENSITY(INCH/HOUR) = 6.59
 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) =
                                           0.40
**********************************
 FLOW PROCESS FROM NODE 57.00 TO NODE 57.25 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.00
 RAINFALL INTENSITY(INCH/HR) = 6.59
 TOTAL STREAM AREA(ACRES) = 0.07
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.40
 ** CONFLUENCE DATA **
                  Tc
 STREAM RUNOFF
                        INTENSITY
                                    AREA
         (CFS) (MIN.) (INCH/HOUR)
0.80 5.29 6.354
0.40 5.00 6.587
 NUMBER
                         (INCH/HOUR)
                                    (ACRE)
    1
                                      0.15
                                      0.07
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
          1.16 5.00
1.19 5.29
    1
                         6.587
                          6.354
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.19 Tc(MIN.) = 5.29
 TOTAL AREA(ACRES) = 0.2
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 57.25 =
                                               196.63 FEET.
**********************************
```

```
FLOW PROCESS FROM NODE 57.25 TO NODE 57.50 IS CODE = 31
    -----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                           56.00 DOWNSTREAM(FEET) = 55.89
 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.52
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.19
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 5.36
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                   57.50 = 211.63 FEET.
*******************************
 FLOW PROCESS FROM NODE 57.50 TO NODE 57.50 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                AREA
         (CFS) (MIN.) (INCH/HUUK)
1.19 5.36 6.299
 NUMBER
                       (INCH/HOUR)
                                 (ACRE)
                                  0.22
 LONGEST FLOWPATH FROM NODE
                       0.00 TO NODE
                                   57.50 = 211.63 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
         RUNOFF TC INTENSITY AREA
 STREAM
 NUMBER
         (CFS)
                (MIN.)
                       (INCH/HOUR) (ACRE)
                10.22
          3.60
                        4.154
                                1.02
 LONGEST FLOWPATH FROM NODE
                       0.00 TO NODE 57.50 = 136.10 FEET.
 ** PEAK FLOW RATE TABLE **
                      INTENSITY
 STREAM RUNOFF Tc
             (MIN.) (INCH/HOUR)
        (CFS)
 NUMBER
         3.07
                5.36
                         6.299
    1
             10.22
    2
         4.38
                         4.154
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.38 Tc(MIN.) =
 TOTAL AREA(ACRES) =
                   1.2
****************************
 FLOW PROCESS FROM NODE 57.50 TO NODE 58.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 55.87 DOWNSTREAM(FEET) = 54.52
```

```
FLOW LENGTH(FEET) = 133.25 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.70
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.38
 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 10.61
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 58.50 = 344.88 FEET.
****************************
 FLOW PROCESS FROM NODE 58.50 TO NODE 58.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.61
 RAINFALL INTENSITY(INCH/HR) = 4.06
 TOTAL STREAM AREA(ACRES) = 1.24
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.38
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINTIAS 58
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
****************************
 FLOW PROCESS FROM NODE 58.00 TO NODE
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.00 RAIN INTENSITY(INCH/HOUR) = 6.59
 TOTAL AREA(ACRES) = 0.38 TOTAL RUNOFF(CFS) =
                                       2.10
*****************************
 FLOW PROCESS FROM NODE 58.00 TO NODE 58.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)
______
 ELEVATION DATA: UPSTREAM(FEET) =
                          66.27 DOWNSTREAM(FEET) = 66.10
 FLOW LENGTH(FEET) = 17.20 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.63
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.10
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 5.06
```

FLOW PROCESS FROM NODE 58.50 TO NODE 58.50 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

TIME OF CONCENTRATION(MIN.) = 5.06

RAINFALL INTENSITY(INCH/HR) = 6.53

TOTAL STREAM AREA(ACRES) = 0.38

PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.10

** CONFLUENCE DATA **

STREAM	RUNOFF	Tc	INTENSITY	AREA
NUMBER	(CFS)	(MIN.)	(INCH/HOUR)	(ACRE)
1	4.38	10.61	4.055	1.24
2	2.10	5.06	6.535	0.38

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

RUNOFF	Tc	INTENSITY
(CFS)	(MIN.)	(INCH/HOUR)
4.19	5.06	6.535
5.69	10.61	4.055
	(CFS) 4.19	(CFS) (MIN.) 4.19 5.06

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 5.69 Tc(MIN.) = 10.61

TOTAL AREA(ACRES) = 1.6

LONGEST FLOWPATH FROM NODE 0.00 TO NODE 58.50 = 344.88 FEET.

FLOW PROCESS FROM NODE 58.50 TO NODE 59.50 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

ELEVATION DATA: UPSTREAM(FEET) = 54.48 DOWNSTREAM(FEET) = 53.36

FLOW LENGTH(FEET) = 112.00 MANNING'S N = 0.013

ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000

DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.4 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 6.07

ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 5.69

PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 10.91

LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 = 456.88 FEET.

```
**********************************
 FLOW PROCESS FROM NODE
                 59.50 TO NODE
                              59.50 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.91
 RAINFALL INTENSITY(INCH/HR) = 3.98
 TOTAL STREAM AREA(ACRES) = 1.62
                           5.69
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
+-----
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 59
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE
                 59.00 TO NODE
                              59.00 IS CODE = 7
-----
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 10.00 RAIN INTENSITY(INCH/HOUR) = 4.21
 TOTAL AREA(ACRES) = 0.25 TOTAL RUNOFF(CFS) =
*******************************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 53.50 DOWNSTREAM(FEET) = 53.30
 FLOW LENGTH(FEET) = 6.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.31
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.40
 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) =
                                10.02
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 = 23.20 FEET.
********************************
 FLOW PROCESS FROM NODE 59.50 TO NODE 59.50 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.02
 RAINFALL INTENSITY(INCH/HR) = 4.21
 TOTAL STREAM AREA(ACRES) = 0.25
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.40
 ** CONFLUENCE DATA **
        RUNOFF
                  Tc
 STREAM
                        INTENSITY
                                   AREA
         (CFS) (MIN.)
5.69 10.91
 NUMBER
                        (INCH/HOUR)
                                    (ACRE)
                           3.981
                                      1.62
    1
                          4.208
    2
          1.40 10.02
                                      0.25
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                       INTENSITY
        (CFS) (MIN.) (II
6.78 10.02
 NUMBER
                        (INCH/HOUR)
                         4.208
    1
          7.01 10.91
                         3.981
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 7.01 Tc(MIN.) = 10.91
TOTAL AREA(ACRES) = 1.9
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 = 456.88 FEET.
******************************
 FLOW PROCESS FROM NODE 59.50 TO NODE
                                 59.50 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                            53.32 DOWNSTREAM(FEET) = 44.10
 FLOW LENGTH(FEET) = 425.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.54
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.01
 PIPE TRAVEL TIME(MIN.) = 0.83 Tc(MIN.) = 11.74
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 59.50 =
______
 END OF STUDY SUMMARY:
                       1.9 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES) =
                                       11.74
 PEAK FLOW RATE(CFS) =
                       7.01
______
______
```

END OF RATIONAL METHOD ANALYSIS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1264

Analysis prepared by:

```
******************* DESCRIPTION OF STUDY ****************
* COAST HIGHWAY 101 - PHASE 1E
* MARCHETA STREET TO BASIL STREET
* MICHAEL BAKER INTERNATIONAL
*****************************
 FILE NAME: C:\USERS\0\01\1.DAT
 TIME/DATE OF STUDY: 11:48 07/23/2020
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
 2003 SAN DIEGO MANUAL CRITERIA
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 6-HOUR DURATION PRECIPITATION (INCHES) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 1.00
 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
 NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                  HIKE FACTOR
NO. (FT)
            (FT)
                  SIDE / SIDE/ WAY (FT) (FT) (FT)
30.0
            20.0
                  GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
```

```
COAST HIGHWAY 101 - PHASE 1E STORM DRAIN
BASIL STREET TO MARHETA STREET
| THIS MODEL INCLUDES FLOW FROM STUBS 24+50 AND 28+50
+-----
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 63
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
******************************
                 63.00 TO NODE 63.00 IS CODE =
 FLOW PROCESS FROM NODE
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 8.00 RAIN INTENSITY(INCH/HOUR) = 4.86
 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 3.10
*******************************
 FLOW PROCESS FROM NODE 63.00 TO NODE 62.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 60.60 DOWNSTREAM(FEET) = 60.00
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.38
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.10
 PIPE TRAVEL TIME(MIN.) = 0.94 Tc(MIN.) =
                                 8.94
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                 62.50 =
                                         190.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 62.50 TO NODE 62.50 IS CODE =
 .....
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 8.94
 RAINFALL INTENSITY(INCH/HR) = 4.53
 TOTAL STREAM AREA(ACRES) = 0.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.10
 -----
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 62
```

```
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE
                    62.00 TO NODE
                                62.00 IS CODE =
-----
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 7.00 RAIN INTENSITY(INCH/HOUR) = 5.30
 TOTAL AREA(ACRES) = 0.65 TOTAL RUNOFF(CFS) =
                                        2.50
*****************************
 FLOW PROCESS FROM NODE 62.00 TO NODE 62.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                          59.99 DOWNSTREAM(FEET) = 59.98
 FLOW LENGTH(FEET) = 2.45 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.52
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.50
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.01
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 62.50 = 2.45 FEET.
***********************************
 FLOW PROCESS FROM NODE 62.50 TO NODE 62.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.01
 RAINFALL INTENSITY(INCH/HR) = 5.30
 TOTAL STREAM AREA(ACRES) = 0.65
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.50
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                Tc INTENSITY
                                 AREA
        (CFS) (MIN.) (IN 3.10 8.94 2.50 7.01
 NUMBER
                       (INCH/HOUR)
                                 (ACRE)
                                   0.90
    1
                       4.529
                         5.296
                                   0.65
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF Tc
                     INTENSITY
        (CFS) (MIN.) (INCH/HOUR)
4.93 7.01 5.296
5.24 8.94 4.529
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 5.24 Tc(MIN.) = 8.94
 TOTAL AREA(ACRES) = 1.5
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 62.50 = 190.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 62.50 TO NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 59.97 DOWNSTREAM(FEET) = 59.20
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.73
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                5.24
 PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 10.05
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 61.50 =
                                          440.00 FEET.
******************************
                  61.50 TO NODE
 FLOW PROCESS FROM NODE
                              61.50 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 10.05
 RAINFALL INTENSITY(INCH/HR) = 4.20
 TOTAL STREAM AREA(ACRES) = 1.55
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.24
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 61
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE 61.00 TO NODE
                              61.00 \text{ IS CODE} = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
```

```
USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 18.50 RAIN INTENSITY(INCH/HOUR) = 2.83
 TOTAL AREA(ACRES) = 2.21 TOTAL RUNOFF(CFS) = 5.30
*****************************
 FLOW PROCESS FROM NODE 61.00 TO NODE 61.50 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) =
                           59.26 DOWNSTREAM(FEET) = 59.20
 FLOW LENGTH(FEET) = 21.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.61
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.30
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 18.60
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 61.50 = 23.45 FEET.
***********************************
 FLOW PROCESS FROM NODE 61.50 TO NODE 61.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.60
 RAINFALL INTENSITY(INCH/HR) = 2.82
 TOTAL STREAM AREA(ACRES) = 2.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.30
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                 AREA
 NUMBER
        (CFS)
                (MIN.)
                        (INCH/HOUR)
                                   (ACRE)
          5.24 10.05 4.198
    1
                                     1.55
          5.30 18.60
                          2.823
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
        (CFS) (MIN.) (INCH/HOUR)
         8.10 10.05
                       4.198
    1
    2
       8.82 18.60 2.823
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.82 Tc(MIN.) = 18.60
 TOTAL AREA(ACRES) = 3.8
```

```
LONGEST FLOWPATH FROM NODE 0.00 TO NODE 61.50 = 440.00 FEET.
****************************
 FLOW PROCESS FROM NODE 61.50 TO NODE
                              53.50 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 59.12 DOWNSTREAM(FEET) = 55.98
 FLOW LENGTH(FEET) = 1063.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.26
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 4.16 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 53.50 = 1503.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                 53.50 TO NODE
                             53.50 IS CODE = 1
------
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.76
 RAINFALL INTENSITY(INCH/HR) = 2.48
 TOTAL STREAM AREA(ACRES) = 3.76
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.82
-----+
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 53
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE REPORT
*******************************
 FLOW PROCESS FROM NODE 53.00 TO NODE
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 6.00 RAIN INTENSITY(INCH/HOUR) = 5.86
 TOTAL AREA(ACRES) = 0.44 TOTAL RUNOFF(CFS) = 2.00
*******************************
 FLOW PROCESS FROM NODE 53.00 TO NODE 53.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 66.90 DOWNSTREAM(FEET) = 66.43
 FLOW LENGTH(FEET) = 47.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.58
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.00
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 6.17
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                       53.50 = 70.45 FEET.
*******************************
 FLOW PROCESS FROM NODE 53.50 TO NODE 53.50 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.17
 RAINFALL INTENSITY(INCH/HR) =
                          5.75
 TOTAL STREAM AREA(ACRES) = 0.44
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 2.00
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                   AREA
         (CFS)
 NUMBER
                 (MIN.)
                         (INCH/HOUR)
                                     (ACRE)
          8.82 22.76
2.00 6.17
    1
                         2.478
                                     3.76
    2
                          5.751
                                       0.44
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
         (CFS) (MIN.) (INCH/HOUR)
          5.80
                 6.17
    1
                         5.751
           9.68 22.76
                           2.478
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.68 Tc(MIN.) = 22.76
TOTAL AREA(ACRES) = 4.2
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 53.50 = 1503.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 53.50 TO NODE 54.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 55.97 DOWNSTREAM(FEET) = 54.77
```

```
FLOW LENGTH(FEET) = 406.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.34
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.68
 PIPE TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) =
                                   24.32
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                  54.50 = 1909.00 FEET.
*******************************
 FLOW PROCESS FROM NODE
                  54.50 TO NODE 54.50 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 24.32
 RAINFALL INTENSITY(INCH/HR) = 2.37
 TOTAL STREAM AREA(ACRES) = 4.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.68
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 54
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
*******************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 6.30 RAIN INTENSITY(INCH/HOUR) = 5.67
 TOTAL AREA(ACRES) = 1.22 TOTAL RUNOFF(CFS) = 5.70
********************************
 FLOW PROCESS FROM NODE 54.00 TO NODE
                               54.50 IS CODE = 31
    >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 67.68 DOWNSTREAM(FEET) = 67.64
 FLOW LENGTH(FEET) = 34.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.70
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 5.70
 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 6.51
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 54.50 = 104.45 FEET.
```

```
**********************************
 FLOW PROCESS FROM NODE 54.50 TO NODE 54.50 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<>>>>
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.51
 RAINFALL INTENSITY(INCH/HR) = 5.56
 TOTAL STREAM AREA(ACRES) = 1.22
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   5.70
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)

        1
        9.68
        24.32
        2.374

        2
        5.70
        6.51
        5.556

                                        AREA
                                        (ACRE)
                                        4.20
                                          1.22
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
         RUNOFF TC INTENSITY
 STREAM
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
                   6.51
           9.84
                            5.556
     1
     2
           12.12
                   24.32
                             2.374
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 12.12 Tc(MIN.) = 24.32
TOTAL AREA(ACRES) = 5.4
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 54.50 = 1909.00 FEET.
********************************
 FLOW PROCESS FROM NODE 54.50 TO NODE 60.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 54.75 DOWNSTREAM(FEET) = 52.37
 FLOW LENGTH(FEET) = 800.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.48
 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
                 12.12
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 2.98 Tc(MIN.) = 27.30
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 60.50 = 2709.00 FEET.
******************************
 FLOW PROCESS FROM NODE 60.50 TO NODE 60.50 IS CODE =
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.30
 RAINFALL INTENSITY(INCH/HR) = 2.20
 TOTAL STREAM AREA(ACRES) = 5.42
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.12
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 60
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
**********************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 14.20 RAIN INTENSITY(INCH/HOUR) = 3.36
 TOTAL AREA(ACRES) = 1.43 TOTAL RUNOFF(CFS) = 3.40
********************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 60.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 71.25 DOWNSTREAM(FEET) = 70.98
 FLOW LENGTH(FEET) = 27.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.31
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.40
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
                                   14.28
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                  60.50 =
                                            131.45 FEET.
**********************************
 FLOW PROCESS FROM NODE 60.50 TO NODE 60.50 IS CODE = 1
   >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.28
```

```
TOTAL STREAM AREA(ACRES) =
                         1.43
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               3.40
 ** CONFLUENCE DATA **
 STREAM RUNOFF
                 Tc INTENSITY
                                    AREA
 NUMBER
         (CFS)
                  (MIN.)
                         (INCH/HOUR)
                                    (ACRE)
          12.12
                 27.30
                                       5.42
                           2.204
    2
          3.40 14.28
                           3.347
                                       1.43
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
        RUNOFF Tc
                       INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
 NUMBER
         11.38 14.28
    1
                          3.347
    2
          14.36 27.30
                          2.204
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 14.36 Tc(MIN.) = 27.30
 TOTAL AREA(ACRES) =
                    6.8
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                     60.50 = 2709.00 FEET.
************************
 FLOW PROCESS FROM NODE 60.50 TO NODE 64.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.36 DOWNSTREAM(FEET) = 51.93
 FLOW LENGTH(FEET) = 143.10 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.79
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.36
 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) =
                                      27.80
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE
                                     64.50 = 2852.10 FEET.
************************************
 FLOW PROCESS FROM NODE 64.50 TO NODE 64.50 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.80
 RAINFALL INTENSITY(INCH/HR) = 2.18
 TOTAL STREAM AREA(ACRES) = 6.85
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                14.36
```

RAINFALL INTENSITY(INCH/HR) = 3.35

```
USER SPECIFY HYDROLOOGY FROM SUB BASIN ENCINITAS 64
REFER TO HYDROLOGY CALCULATIONS AND DRAINAGE EXHIBIT
**********************************
 FLOW PROCESS FROM NODE 64.00 TO NODE 64.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.20 RAIN INTENSITY(INCH/HOUR) = 6.42
 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) =
**********************************
 FLOW PROCESS FROM NODE 64.00 TO NODE 64.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 68.80 DOWNSTREAM(FEET) = 68.72
 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.22
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.50
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 5.23
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 64.50 = 139.45 FEET.
****************************
 FLOW PROCESS FROM NODE
                  64.50 TO NODE
                               64.50 \text{ IS CODE} = 1
------
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.23
 RAINFALL INTENSITY(INCH/HR) = 6.40
 TOTAL STREAM AREA(ACRES) = 0.28
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                Tc INTENSITY
 STREAM
        RUNOFF
                                 AREA
               (MIN.)
 NUMBER
        (CFS)
                      (INCH/HOUR)
                                 (ACRE)
                      2.178
                                 6.85
        14.36 27.80
    1
         1.50 5.23
                       6.397
                                  0.28
    2
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
    BER (CFS) (MIN.) (INCH/HOUR)
1 6.39 5.23 6.397
2 14.87 27.80 2.178
 NUMBER
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 14.87 Tc(MIN.) = 27.80
TOTAL AREA(ACRES) = 7.1
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 64.50 = 2852.10 FEET.
**********************************
 FLOW PROCESS FROM NODE 64.50 TO NODE 65.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 51.92 DOWNSTREAM(FEET) = 51.06
 FLOW LENGTH(FEET) = 285.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.82
 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.87
 PIPE TRAVEL TIME(MIN.) = 0.98 Tc(MIN.) = 28.78
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 65.50 = 3137.10 FEET.
**********************************
 FLOW PROCESS FROM NODE 65.50 TO NODE 65.50 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 28.78
 RAINFALL INTENSITY(INCH/HR) = 2.13
 TOTAL STREAM AREA(ACRES) = 7.13
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
USER SPECIFY HYDROLOGY FOR SUB BASIN ENCINITAS 65
REFERENCE HYDROLOGY CALCULATIONS AND DRAIANGE EXHIBIT
*********************************
 FLOW PROCESS FROM NODE 65.00 TO NODE 65.00 IS CODE = 7
```

```
>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 5.30 RAIN INTENSITY(INCH/HOUR) = 6.34
 TOTAL AREA(ACRES) = 0.85 TOTAL RUNOFF(CFS) =
****************************
 FLOW PROCESS FROM NODE 65.50 TO NODE 65.50 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 5.30
 RAINFALL INTENSITY(INCH/HR) = 6.34
 TOTAL STREAM AREA(ACRES) = 0.85
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             4.40
 ** CONFLUENCE DATA **
 STREAM
       RUNOFF
                  Tc
                       INTENSITY
                                  AREA
              (MIN.)
                       (INCH/HOUR)
 NUMBER
        (CFS)
                                  (ACRE)
         14.87
                28.78
                         2.130
                                    7.13
    1
    2
         4.40
                         6.344
               5.30
                                    0.85
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM
       RUNOFF Tc
                      INTENSITY
 NUMBER
                (MIN.)
        (CFS)
                      (INCH/HOUR)
         9.39
               5.30
                        6.344
    1
         16.35
                28.78
                        2.130
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 16.35 Tc(MIN.) = 28.78
 TOTAL AREA(ACRES) = 8.0
 LONGEST FLOWPATH FROM NODE
                       0.00 TO NODE
                                  65.50 =
                                           3137.10 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                      8.0 \text{ TC(MIN.)} = 28.78
 PEAK FLOW RATE(CFS) =
                     16.35
______
______
```

END OF RATIONAL METHOD ANALYSIS

Michael Baker

Tc Calculations

On-Site Drainage Subarea	Total Path of Travel	Initi	al Travel Tir	me ¹			Tc (min)					
ID#	L (ft)	Slope (%)	Lm (ft)	T _i (min)	Slope (%)	US Elv	DS Elv	Delta Elv	L (ft)	V (ft/s) ²	T _t (min)	
Encintias 53	300	1%	60	4.5	1%	76	74	2	240.0	2.75	1.5	6.0
Encintias 54	450	1%	60	4.1	0.3%	79	78	1	390.0	1.75	3.7	7.8
Encintias 55	660	1%	60	4.1	0.3%	79	77	2	600.0	1.75	5.7	9.8
Encintias 56	165	1%	60	4.1	1%	78	77	1	105.0	2.75	0.6	5.0
Encintias 57	100	1%	60	4.1	2.5%	76	75	1	40.0	4.25	0.2	5.0
Encintias 58	200	1%	60	4.1	1%	76	74	2	140.0	2.75	0.8	5.0
Encintias 59	180	1%	60	4.1	1%	74	73	1	120.0	2.75	0.7	5.0
Encintias 60	920	1%	65	6.1	0.2%	78	76	2	855.0	1.75	8.1	14.2
Encintias 61	1625	1%	65	6.1	0.6%	76	66	10	1560.0	2.10	12.4	18.5
Encintias 62	237	1%	65	6.1	1.7%	67	64	3	172.0	3.30	0.9	7.0
Encintias 63	488		65	6.1	2.1%	72	63	9	423.0	3.70	1.9	8.0
Encinitas 64	245			4.1	1.1%	75	73	2	185.0	2.75	1.1	5.2
Encinitas 65	343	1%	60	4.1	4.9%	73	59	14	283.0	4.0	1.2	5.3

¹ Per Table 3-2 of SDCHM ² Per Figure 3-6 of SDCHM

Michael Baker

Runoff Coefficient Inputs

On-Site Drainage Subarea ID #	Inlet Type	Land Use Per Table 3-1	C ¹
Encintias 53	On-Grade	N. Commerical	0.79
Encintias 54	In-Sag	G. Commerical	0.82
Encintias 55	On-Grade	G. Commerical	0.82
Encintias 56	In-Sag	G. Commerical	0.82
Encintias 57	In-Sag	G. Commerical	0.82
Encintias 58	In-Sag	G. Commerical	0.82
Encintias 59	On-Grade	G. Commerical	0.82
Encintias 60*	In-Sag	24.0 Du/A or less	0.71
Encintias 61*	In-Sag	24.0 Du/A or less	0.71
Encintias 62*	In-Sag	24.0 Du/A or less	0.71
Encinitas 63*	On-Grade	24.0 Du/A or less	0.71
Encinitas 64	On-Grade	G. Commercial	0.82
Encinitas 65	On-Grade	G. Commercial	0.82

¹ Using Table 3-1 of the San Diego County Hydrology Manual (SDCHM)
*Land use for Encinitas 60, 61, 62, and 63 was determined using 65%

imperviousness.

Appendix D – Inlet Results Input and Output

Included within this appendix:

50 Year Inlet Results Summary 100 Year Inlet Results Summary Michael Baker

50 Year Inlet Result Summary

Curb Inlet Sizing

Project: Coast Highway 101 - Moonlight INLETS ON GRADE

Type of Inlet	Inlet Location/Map ID	Avg. Street Slope ¹ S (%)	Peak 50-yr Flow ² Q (cfs)	Gutter Depression a (ft)	Flow Depth ³ y (ft)	Required Length L (ft) ⁴	Use Length ⁵	50-yr Gutter Spread ⁶
ON-GRADE	Encinitas 53	2.00%	1.8	0.33	0.23	6.1	8.00	7.70
ON-GRADE	Encinitas 55	1.00%	3.1	0.33	0.32	8.5	10.00	9.70
ON-GRADE	Encinitas 59	1.00%	1.2	0.33	0.23	4.1	6.00	5.40
ON-GRADE	Encinitas 64	2.00%	1.3	0.33	0.21	4.7	6.00	5.65
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								

- 1. Taken from Improvement Plan
- 2. From hydrology calculations
- 3. Per section 2.3.1 of the San Diego County Hydrology Manual
- 4. From Equation: $Q = 0.7L(a+y)^3/2$
- 5. Length shown on plans (Required Length of Opening + 1 foot)
- 6. Gutter Spread calculated in storm sewers (20' max per 2.2.1 of SDCHDM)

Curb Inlet Sizing

SUMP INLETS

Туре	Inlet	Surface	Required	Use 3	50-yr
of	Location/Map ID	Flow ¹	Length of	Length ³	Gutter
Inlet	Location/iviap ib	Q 50 (cfs)	Opening ² (ft)	(ft.)	Spread ⁴
SUMP	Encinitas 54	4.4	2.4	5	18.35
SUMP	Encintias 56	0.7	0.4	5	5.38
SUMP	Encinitas 57	0.3	0.2	5	3.06
SUMP	Encinitas 58	1.8	1.0	5	10.11
SUMP	Encinitas 60	3.0	1.7	5	14.21
SUMP	Encinitas 62	2.2	1.2	5	9.15

- 1. From hydrology calculations
- 2. From The Orifice Equation: $Q = C^*A (2^*g^*H)^{1/2}$

The Orifice Coefficient, C = 0.6, and Gravitational Constant, g = 32.2 ft/s², and AREA, A = L*h The Inlet Openinig Height, h = 0.5 ft, Per SDRSD D-2

The Head Measured from the Centroid of Orifice, H = 10" (Ponded to TC)-3" (centroid) = 0.58 ft

- \therefore Q = .6*L*0.5*(2*32.2*0.58)^{1/2}, Therefore L=Q/1.8
- 3. Length shown on plans (Required Length of Opening + 1 foot)
- 4. Gutter Spread calculated in storm sewers (20' max per 2.2.1 of SDCHDM)

Line No.	Inlet ID	Area	Inlet Time	Int.	Runoff Coeff.	Q = CIA	Q Carry- over	Q Captured	Q Bypassed	Junct Type	Curb Height	Curb Length	Grate Area	Grate Length	Grate Width	Gutter Slope	Gutter Width	Cross Slope, Sw	Cross Slope, Sx	Local Depr.	Inlet Depth
		(ac)	(min)	(in/hr)	(C)	(cfs)	(cfs)	(cfs)	(cfs)		(in)	(ft)	(sqft)	(ft)	(ft)	(ft/ft)	(ft)	(ft/ft)	(ft/ft)	(in)	(ft)
1		0.00	0.0	0.00	0.00	6.00		••••		МН											
2		0.00	0.0	0.00	0.00	6.00				МН											
3		0.00	0.0	0.00	0.00	1.20	0.00	1.20	0.00	Curb	4.0	16.76				0.020	2.00	0.050	0.020	0.33	0.20
4		0.00	0.0	0.00	0.00	4.87				MH											
5		0.00	0.0	0.00	0.00	1.80	0.00	1.80	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.26
6		0.00	0.0	0.00	0.00	3.75				MH											
7		0.00	0.0	0.00	0.00	0.30	0.00	0.30	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.12
8		0.00	0.0	0.00	0.00	0.70	0.00	0.70	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.17
9		0.00	0.0	0.00	0.00	3.10				MH											
10		0.00	0.0	0.00	0.00	3.10	0.00	2.06	1.04	Curb	6.0	11.00				0.010	2.00	0.050	0.020	0.0	0.25
11	New	0.00	0.0	0.00	0.00	13.56				MH											
12	New	0.00	0.0	0.00	0.00	12.27				MH											
13		0.00	0.0	0.00	0.00	1.30	0.00	0.57	0.73	Curb	6.0	5.00				0.020	2.00	0.050	0.020	0.0	0.17
14		0.00	0.0	0.00	0.00	11.83				MH											
15		0.00	0.0	0.00	0.00	3.00	0.00	3.00	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.34
16		0.00	0.0	0.00	0.00	0.01				MH											
17		0.00	0.0	0.00	0.00	9.88				MH											
18		0.00	0.0	0.00	0.00	4.40	0.00	4.40	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.43
19		0.00	0.0	0.00	0.00	7.76				MH											
20		0.00	0.0	0.00	0.00	1.80	0.00	1.16	0.64	Curb	6.0	8.00				0.010	2.00	0.050	0.020	0.0	0.21
21		0.00	0.0	0.00	0.00	6.99				MH											
22		0.00	0.0	0.00	0.00	6.99				MH											
23		0.00	0.0	0.00	0.00	4.80				MH											
24		0.00	0.0	0.00	0.00	4.58				MH											
25		0.00	0.0	0.00	0.00	2.20	0.00	2.20	0.00	Curb	4.0	4.00				Sag	2.00	0.050	0.020	0.0	0.31
26		0.00	0.0	0.00	0.00	2.70				MH											

Hydraflow Inlet Report 1

Line No.	Bypass Depth	Bypass Spread	Gutter Depth	Gutter Spread	Bypass Line No.
	(ft)	(ft)	(ft)	(ft)	
1					
2					
3	0.00	0.00	0.17	5.43	2
4					
5	n/a	n/a	0.26	10.11	Sag
6					
7	n/a	n/a	0.12	3.06	Sag
8	n/a	n/a	0.17	5.38	Sag
9					
10	0.18	5.99	0.25	9.69	9
11					
12					
13	0.14	4.19	0.17	5.65	12
14					
15	n/a	n/a	0.34	14.21	Sag
16					
17					
18	n/a	n/a	0.43	18.35	Sag
19					
20	0.15	4.69	0.21	7.69	19
21					
22					
23					
24					
25	n/a	n/a	0.31	12.55	Sag
26					

Michael Baker

100 Year Inlet Result Summary

Curb Inlet Sizing

Project: Coast Highway 101 - Moonlight INLETS ON GRADE

Type of Inlet	Inlet Location/Map ID	Avg. Street Slope ¹ S (%)	Peak 100-yr Flow ² Q (cfs)	Gutter Depression a (ft)	Flow Depth ³ y (ft)	Required Length L (ft) ⁴	Use Length ⁵	100-yr Gutter Spread ⁶
ON-GRADE	Encinitas 53	2.00%	2.0	0.33	0.24	6.6	8.00	8.10
ON-GRADE	Encinitas 55	1.00%	3.6	0.33	0.34	9.5	11.00	10.30
ON-GRADE	Encinitas 59	1.00%	1.4	0.33	0.24	4.6	6.00	5.90
ON-GRADE	Encinitas 64	2.00%	1.5	0.33	0.22	5.3	7.00	5.65
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								
ON-GRADE								

- 1. Taken from Improvement Plan
- 2. From hydrology calculations
- 3. Per section 2.3.1 of the San Diego County Hydrology Manual
- 4. From Equation: $Q = 0.7L(a+y)^3/2$
- 5. Length shown on plans (Required Length of Opening + 1 foot)
- 6. Gutter Spread calculated in storm sewers (20' max per 2.2.1 of SDCHDM)

Curb Inlet Sizing

SUMP INLETS

Туре	lolot	Surface	Required	Use 3	100-yr
of	Inlet Location/Map ID	Flow ¹	Length of	Length ³	Gutter
Inlet	Location/Map ib	Q 100 (cfs)	Opening ² (ft)	(ft.)	Spread ⁴
SUMP	Encinitas 54	5.0	2.8	5	19.98
SUMP	Encintias 56	0.8	0.4	5	5.90
SUMP	Encinitas 57	0.4	0.2	5	3.71
SUMP	Encinitas 58	2.1	1.2	5	11.20
SUMP	Encinitas 60	3.4	1.9	5	15.50
SUMP	Encinitas 62	2.5	1.4	5	9.15

- 1. From hydrology calculations
- 2. From The Orifice Equation: $Q = C^*A (2^*g^*H)^{1/2}$

The Orifice Coefficient, C = 0.6, and Gravitational Constant, g = 32.2 ft/s², and AREA, A = L*h The Inlet Openinig Height, h = 0.5 ft, Per SDRSD D-2

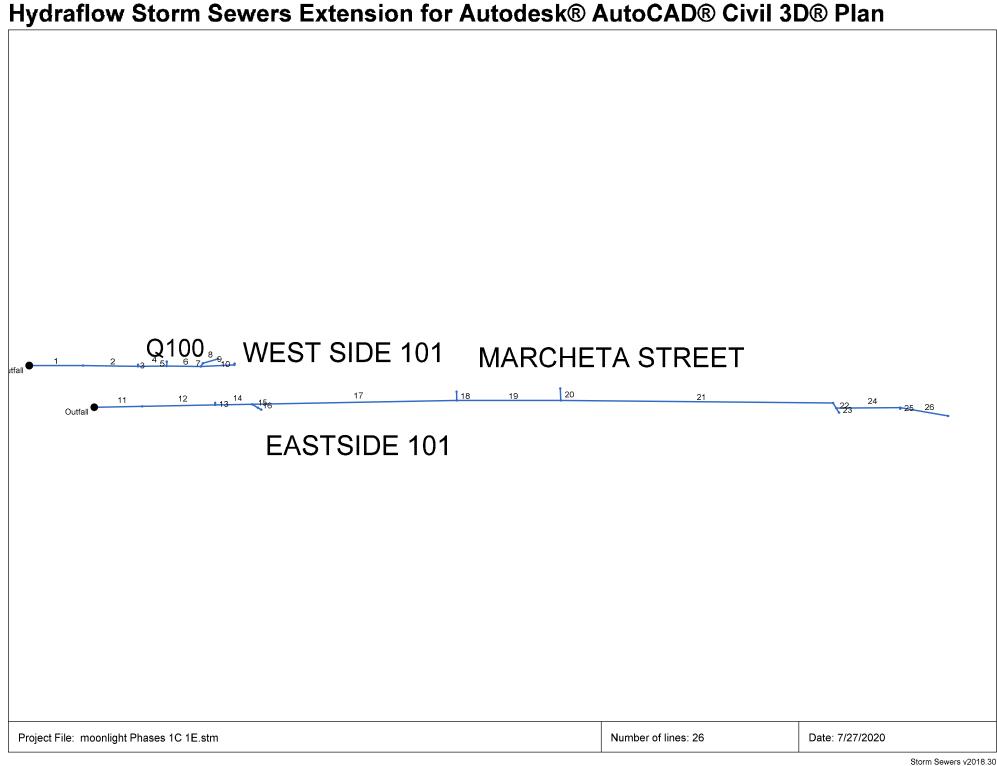
The Head Measured from the Centroid of Orifice, H = 10" (Ponded to TC)-3" (centroid) = 0.58 ft

- \therefore Q = .6*L*0.5*(2*32.2*0.58)^{1/2}, Therefore L=Q/1.8
- 3. Length shown on plans (Required Length of Opening + 1 foot)
- 4. Gutter Spread calculated in storm sewers (20' max per 2.2.1 of SDCHDM)

Line No.	Inlet ID	Area	Inlet Time	Int.	Runoff Coeff.	Q = CIA	Q Carry- over	Q Captured	Q Bypassed	Junct Type	Curb Height	Curb Length	Grate Area	Grate Length	Grate Width	Gutter Slope	Gutter Width	Cross Slope, Sw	Cross Slope, Sx	Local Depr.	Inlet Depth
		(ac)	(min)	(in/hr)	(C)	(cfs)	(cfs)	(cfs)	(cfs)		(in)	(ft)	(sqft)	(ft)	(ft)	(ft/ft)	(ft)	(ft/ft)	(ft/ft)	(in)	(ft)
1		0.00	0.0	0.00	0.00	7.03		••••		МН											
2		0.00	0.0	0.00	0.00	7.03				МН											
3		0.00	0.0	0.00	0.00	1.40	0.00	1.40	0.00	Curb	4.0	16.76				0.020	2.00	0.050	0.020	0.33	0.20
4		0.00	0.0	0.00	0.00	5.69				MH											
5		0.00	0.0	0.00	0.00	2.10	0.00	2.10	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.28
6		0.00	0.0	0.00	0.00	4.38				MH											
7		0.00	0.0	0.00	0.00	0.40	0.00	0.40	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.13
8		0.00	0.0	0.00	0.00	0.80	0.00	0.80	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.18
9		0.00	0.0	0.00	0.00	3.60				MH											
10		0.00	0.0	0.00	0.00	3.60	0.00	2.26	1.34	Curb	6.0	11.00				0.010	2.00	0.050	0.020	0.0	0.27
11	New	0.00	0.0	0.00	0.00	16.37				MH											
12	New	0.00	0.0	0.00	0.00	14.87				MH											
13		0.00	0.0	0.00	0.00	1.50	0.00	0.61	0.89	Curb	6.0	5.00				0.020	2.00	0.050	0.020	0.0	0.18
14		0.00	0.0	0.00	0.00	14.36				MH											
15		0.00	0.0	0.00	0.00	3.40	0.00	3.40	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.37
16		0.00	0.0	0.00	0.00	0.01				MH											
17		0.00	0.0	0.00	0.00	12.12				MH											
18		0.00	0.0	0.00	0.00	5.00	0.00	5.00	0.00	Curb	6.0	5.00				Sag	2.00	0.050	0.020	0.0	0.46
19		0.00	0.0	0.00	0.00	9.00				MH											
20		0.00	0.0	0.00	0.00	2.00	0.00	1.24	0.76	Curb	6.0	8.00				0.010	2.00	0.050	0.020	0.0	0.22
21		0.00	0.0	0.00	0.00	8.82				MH											
22		0.00	0.0	0.00	0.00	8.82				MH											
23		0.00	0.0	0.00	0.00	5.30				MH											
24		0.00	0.0	0.00	0.00	5.24				MH											
25		0.00	0.0	0.00	0.00	2.45	0.00	2.45	0.00	Curb	4.0	4.00				Sag	2.00	0.050	0.020	0.0	0.33
26		0.00	0.0	0.00	0.00	3.11				MH											

Hydraflow Inlet Report 1

Line No.	Bypass Depth	Bypass Spread	Gutter Depth	Gutter Spread	Bypass Line No.
	(ft)	(ft)	(ft)	(ft)	
1					
2					
3	0.00	0.00	0.18	5.86	2
4					
5	n/a	n/a	0.28	11.20	Sag
6					
7	n/a	n/a	0.13	3.71	Sag
8	n/a	n/a	0.18	5.89	Sag
9					
10	0.20	6.75	0.27	10.31	9
11					
12					
13	0.15	4.65	0.18	6.05	12
14					
15	n/a	n/a	0.37	15.45	Sag
16					
17					
18	n/a	n/a	0.46	19.98	Sag
19					
20	0.16	5.15	0.22	8.05	19
21					
22					
23					
24					
25	n/a	n/a	0.33	13.48	Sag
26					


Appendix E – 100 Year Storm Drain Phases 1C & 1E

Included within this appendix:

100 Year Pipe Results Summary

Michael Baker

100 Year Pipe Results

Structure Report

Project File: moonlight Phases 1C 1E.stm

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Manhole	64.43	Cir	4.00	4.00	18	Cir	51.16	18	Cir	51.20
2		Manhole	73.00	Cir	4.00	4.00	18	Cir	53.32	18 18	Cir Cir	53.30 53.36
3		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	53.50			
4		Manhole	75.00	Cir	4.00	4.00	18	Cir	54.48	18 18	Cir Cir	66.10 54.52
5		Curb-Horiz	74.04	Cir	4.00	4.00	18	Cir	66.27			
6		Manhole	76.50	Cir	4.00	4.00	18	Cir	55.87	18 18	Cir Cir	55.89 55.91
7		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	56.00	18	Cir	55.90
8		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	56.50			
9		Manhole	77.29	Cir	4.00	4.00	18	Cir	57.23	18	Cir	57.20
10		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	57.30			
11	New	Manhole	59.38	Cir	4.00	4.00	18	Cir	51.06	24	Cir	51.06
12	New	Manhole	73.45	Cir	4.00	4.00	24	Cir	51.92	18 24	Cir Cir	68.72 51.93
13		Curb-Horiz	73.44	Cir	4.00	4.00	18	Cir	68.80			
14		Manhole	76.02	Cir	4.00	4.00	24	Cir	52.36	18 24	Cir Cir	70.98 52.37
15		Curb-Horiz	75.88	Cir	4.00	4.00	18	Cir	71.25	18	Cir	71.29
16		Manhole	76.74	Cir	4.00	4.00	18	Cir	71.44			
17		Manhole	79.08	Cir	4.00	4.00	24	Cir	54.75	18 24	Cir Cir	67.64 54.77
18		Curb-Horiz	79.50	Cir	4.00	4.00	18	Cir	67.98			
19		Manhole	78.86	Cir	4.00	4.00	24	Cir	55.97	18 24	Cir Cir	66.43 55.98

Number of Structures: 26

Storm Sewers v2018.30

Run Date: 7/27/2020

Structure Report

Struct	Structure ID	Junction	Rim Structure Elev Shape Length Width					Line Out			Line In	
No.		Туре	(ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape		Size (in)	Shape	Invert (ft)
20		Curb-Horiz	79.00	Cir	4.00	4.00	18	Cir	66.90			
21		Manhole	66.92	Cir	4.00	4.00	24	Cir	59.12	18	Cir	59.12
22		Manhole	66.15	Cir	4.00	4.00	18	Cir	59.19	18 18	Cir Cir	59.20 59.20
23		Manhole	64.64	Cir	4.00	4.00	18	Cir	59.26			
24		Manhole	64.43	Cir	4.00	4.00	18	Cir	59.97	18 18	Cir Cir	59.98 60.00
25		Curb-Horiz	64.58	Cir	4.00	4.00	18	Cir	59.99			
26		Manhole	63.00	Cir	4.00	4.00	18	Cir	60.60			
Project F	File: moonlight Phases 1C 1E.		umber of Structu	res: 26	Run Date: 7/27/2020							

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	PHASE 1 C MAIN	7.03	18	Cir	210.000	44.10	51.16	3.362	45.41	52.19	n/a	52.19 j	End	Manhole
2	PHASE 1 C MAIN	7.03	18	Cir	215.000	51.20	53.32	0.986	52.19	54.35	n/a	54.35	1	Manhole
3	A 58 Lateral 2 (No Profile)	1.40	18	Cir	6.000	53.30	53.50	3.333	54.35	53.94	n/a	53.94	2	Curb-Horiz
4	PHASE 1 C MAIN	5.69	18	Cir	111.800	53.36	54.48	1.002	54.35	55.40	n/a	55.40 j	2	Manhole
5	A56 Lateral 3 16+25	2.10	18	Cir	17.200	66.10	66.27	0.988	66.56	66.82	0.20	66.82	4	Curb-Horiz
6	PHASE 1 C MAIN	4.38	18	Cir	133.260	54.52	55.87	1.013	55.40	56.67	n/a	56.67 j	4	Manhole
7	A55 Lateral 5 (No Profile)	0.40	18	Cir	14.700	55.89	56.00	0.748	56.67	56.23	0.09	56.23	6	Curb-Horiz
8	A55 Lateral 5 (No Profile)	0.80	18	Cir	60.530	55.90	56.50	0.991	56.23	56.83	n/a	56.83	7	Curb-Horiz
9	PHASE 1 C MAIN	3.60	18	Cir	131.100	55.91	57.23	1.007	56.67	57.95	n/a	57.95 j	6	Manhole
10	A 54 Lateral 6 (No Profile)	3.60	18	Cir	5.000	57.20	57.30	2.000	57.95	58.02	n/a	58.02 j	9	Curb-Horiz
11	EX 18 INCH	16.37	18	Cir	187.250	43.05	51.06	4.278	52.84*	57.39*	0.20	57.59	End	Manhole
12	PHASE 1 E MAIN	14.87	24	Cir	285.000	51.06	51.92	0.302	57.59*	58.82*	0.35	59.17	11	Manhole
13	LAT 14+96.96	1.50	18	Cir	8.000	68.72	68.80	1.000	69.10	69.26	n/a	69.26	12	Curb-Horiz
14	PHASE 1 E MAIN	14.36	24	Cir	143.410	51.93	52.36	0.300	59.17*	59.75*	0.19	59.94	12	Manhole
15	LAT 4 16+44.34	3.40	18	Cir	27.000	70.98	71.25	1.000	71.57	71.95	n/a	71.95	14	Curb-Horiz
16	LAT 4 16+44.34	0.01	18	Cir	15.000	71.29	71.44	1.000	71.95	71.48	n/a	71.48	15	Manhole
17	PHASE 1 E MAIN	12.12	24	Cir	800.000	52.37	54.75	0.298	59.94*	62.24*	0.23	62.47	14	Manhole
18	LAT 24+45.71	5.70	18	Cir	34.000	67.64	67.98	1.000	68.43	68.90	n/a	68.90	17	Curb-Horiz
19	PHASE 1 E MAIN	9.00	24	Cir	405.900	54.77	55.97	0.296	62.47*	63.11*	0.13	63.24	17	Manhole
20	LAT 28+53.97	2.00	18	Cir	47.000	66.43	66.90	1.000	66.87	67.43	n/a	67.43	19	Curb-Horiz
21	PHASE 1 E MAIN	8.82	24	Cir	1063.000	55.98	59.12	0.295	63.24*	64.86*	0.11	64.96	19	Manhole
22	BASIN LAT 38+94.76 B	8.82	18	Cir	23.200	59.12	59.19	0.302	64.96*	65.13*	0.34	65.47	21	Manhole
23	BASIN LAT 38+94.76 A	5.30	18	Cir	21.000	59.20	59.26	0.286	65.47*	65.52*	0.14	65.66	22	Manhole
24	E.P. LAT 41+75	5.24	18	Cir	250.000	59.20	59.97	0.308	65.47*	66.09*	0.14	66.23	22	Manhole

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Run Date: 7/27/2020

NOTES: Known Qs only; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Storm Sewer Summary Report

∟ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	E.P. CURB INLET	2.45	18	Cir	4.430	59.98	59.99	0.226	66.23*	66.23*	0.03	66.26	24	Curb-Horiz
25 26	E.P. CURB INLET BASIN LAT 43+50	3.11	18 18	Cir	4.430		59.99 60.60	0.226	66.23* 66.23*	66.39*	0.03	66.26 66.44	24	Manhole

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Run Date: 7/27/2020

NOTES: Known Qs only; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q Byp	Junc	Curb Ir	nlet	Gra	ite Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	(cfs)	capt (cfs)	(cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	⊢Line No
1		7.03*	0.00	0.00	7.03	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
2		7.03*	0.00	0.00	7.03	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
3		1.40*	0.00	1.40	0.00	Curb	4.0	16.76	0.00	0.00	0.00	0.020	2.00	0.050	0.020	0.013	0.18	5.86	0.03	0.00	0.3	2
4		5.69*	0.00	0.00	5.69	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
5		2.10*	0.00	2.10	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.28	11.20	0.28	11.20	0.0	Off
6		4.38*	0.00	0.00	4.38	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
7		0.40*	0.00	0.40	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.13	3.71	0.13	3.71	0.0	Off
8		0.80*	0.00	0.80	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.18	5.89	0.18	5.89	0.0	Off
9		3.60*	1.34	0.00	4.94	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
10		3.60*	0.00	2.26	1.34	Curb	6.0	11.00	0.00	0.00	0.00	0.010	2.00	0.050	0.020	0.013	0.27	10.31	0.20	6.75	0.0	9
11	New	16.37*	0.00	0.00	16.37	MH	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
12	New	14.87*	0.89	0.00	15.76	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
13		1.50*	0.00	0.61	0.89	Curb	6.0	5.00	0.00	0.00	0.00	0.020	2.00	0.050	0.020	0.013	0.18	6.05	0.15	4.65	0.0	12
14		14.36*	0.00	0.00	14.36	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
15		3.40*	0.00	3.40	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.37	15.45	0.37	15.45	0.0	Off
16		0.01*	0.00	0.00	0.01	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
17		12.12*	0.00	0.00	12.12	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
18		5.70*	0.00	5.70	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.50	21.80	0.50	21.80	0.0	Off
19		9.00*	0.76	0.00	9.76	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
20		2.00*	0.00	1.24	0.76	Curb	6.0	8.00	0.00	0.00	0.00	0.010	2.00	0.050	0.020	0.013	0.22	8.05	0.16	5.15	0.0	19
21		8.82*	0.00	0.00	8.82	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
22		8.82*	0.00	0.00	8.82	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
23		5.30*	0.00	0.00	5.30	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Run Date: 7/27/2020

NOTES: Inlet N-Values = 0.016; Known Qs only; * Indicates Known Q added. All curb inlets are Horiz throat.

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)		Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
24		5.24*	0.00	0.00	5.24	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
25		2.45*	0.00	2.45	0.00	Curb	4.0	4.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.33	13.48	0.33	13.48	0.0	Off
26		3.11*	0.00	0.00	3.11	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Run Date: 7/27/2020

NOTES: Inlet N-Values = 0.016; Known Qs only; * Indicates Known Q added. All curb inlets are Horiz throat.

Line No.	Area Dn	Area Up	Byp Ln No	Coeff C1	Coeff C2	Coeff C3	Capac Full	Crit Depth	Cross SI, Sw	Cross SI, Sx	Curb Len	Defl Ang	Depth Dn	Depth Up	DnStm Ln No	Drng Area	Easting X	EGL Dn	EGL Up	Energy Loss
	(sqft)	(sqft)		(C)	(C)	(C)	(cfs)	(ft)	(ft/ft)	(ft/ft)	(ft)	(Deg)	(ft)	(ft)		(ac)	(ft)	(ft)	(ft)	(ft)
1	1.29	1.29	n/a	0.20	0.50	0.90	19.25	1.03				0.000	1.31	1.03**	Outfall	0.00	338.22	45.87	52.65	0.000
2	1.23	1.29	n/a	0.20	0.50	0.90	10.43	1.03				0.741	0.99	1.03**	1	0.00	553.20	52.65	54.81	0.000
3	0.44	0.44	2	0.20	0.50	0.90	19.17	0.44	0.050	0.020	16.76	-91.397	1.05	0.44**	2	0.00	553.13	54.51	54.10	0.000
4	1.14	1.14	n/a	0.20	0.50	0.90	10.51	0.92				-1.264	0.99	0.92**	2	0.00	665.00	54.74	55.79	0.000
5	0.45	0.58	Sag	0.20	0.50	0.90	10.44	0.55	0.050	0.020	5.00	-88.736	0.46	0.55**	4	0.00	665.22	66.76	67.02	0.000
6	0.96	0.96	n/a	0.20	0.50	0.90	10.57	0.80				1.264	0.88	0.80**	4	0.00	798.25	55.72	56.99	0.000
7	0.18	0.18	Sag	0.20	0.50	0.90	9.08	0.23	0.050	0.020	5.00	-59.036	0.78	0.23**	6	0.00	805.97	56.75	56.31	0.000
8	0.29	0.29	Sag	0.20	0.50	0.90	10.46	0.33	0.050	0.020	5.00	42.070	0.33	0.33**	7	0.00	864.09	56.35	56.95	0.000
9	0.84	0.84	n/a	0.20	0.50	0.90	10.54	0.72				-3.447	0.76	0.72**	6	0.00	929.20	56.95	58.24	0.000
10	0.84	0.84	9	0.20	0.50	0.90	14.85	0.72	0.050	0.020	11.00	-79.121	0.75	0.72**	9	0.00	929.91	58.24	58.31	0.000
11	1.77	1.77	n/a	0.20	0.50	0.90	21.72	1.43				-1.085	1.50	1.50	Outfall	0.00	569.39	54.17	58.73	4.551
12	3.14	3.14	n/a	0.20	0.50	0.90	12.42	1.39				0.000	2.00	2.00	11	0.00	854.34	57.94	59.17	1.232
13	0.36	0.46	12	0.20	0.50	0.90	10.50	0.46	0.050	0.020	5.00	-90.261	0.38	0.46**	12	0.00	854.15	69.27	69.43	0.000
14	3.14	3.14	n/a	0.20	0.50	0.90	12.38	1.36				0.000	2.00	2.00	12	0.00	997.72	59.50	60.08	0.578
15	0.64	0.81	Sag	0.20	0.50	0.90	10.50	0.70	0.050	0.020	5.00	31.347	0.59	0.70**	14	0.00	1021.04	71.84	72.22	0.000
16	0.01	0.01	n/a	0.20	0.50	0.90	10.50	0.04				0.000	0.66	0.04**	15	0.00	1034.00	71.96	71.49	0.000
17	3.14	3.14	n/a	0.20	0.50	0.90	12.34	1.25				0.000	2.00	2.00	14	0.00	1797.58	60.17	62.47	2.298
18	0.94	1.14	Sag	0.20	0.50	0.90	10.50	0.92	0.050	0.020	5.00	-90.727	0.79	0.92**	17	0.00	1796.50	68.82	69.29	0.000
19	3.14	3.14	n/a	0.20	0.50	0.90	12.30	1.07				1.129	2.00	2.00	17	0.00	2203.48	62.60	63.24	0.643
20	0.44	0.56	19	0.20	0.50	0.90	10.50	0.53	0.050	0.020	8.00	-92.737	0.44	0.53**	19	0.00	2201.27	67.07	67.63	0.000
21	3.14	3.14	n/a	0.20	0.50	0.90	12.29	1.06				0.497	2.00	2.00	19	0.00	3266.43	63.36	64.98	1.617
22	1.77	1.77	n/a	0.20	0.50	0.90	5.77	1.15				58.098	1.50	1.50	21	0.00	3278.51	65.35	65.51	0.164
23	1.77	1.77	n/a	0.20	0.50	0.90	5.61	0.89				-1.044	1.50	1.50	22	0.00	3289.76	65.61	65.66	0.054

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Line No.	Area Dn	Area Up	Byp Ln No	Coeff C1	Coeff C2	Coeff C3	Capac Full	Crit Depth	Cross SI, Sw	Cross SI, Sx	Curb Len	Defl Ang	Depth Dn	Depth Up	DnStm Ln No	Drng Area	Easting X	EGL Dn	EGL Up	Energy Loss
	(sqft)	(sqft)		(C)	(C)	(C)	(cfs)	(ft)	(ft/ft)	(ft/ft)	(ft)	(Deg)	(ft)	(ft)		(ac)	(ft)	(ft)	(ft)	(ft)
24	1.77	1.77	n/a	0.20	0.50	0.90	5.83	0.88				-59.072	1.50	1.50	22	0.00	3528.50	65.60	66.23	0.623
25	1.77	1.77	Sag	0.20	0.50	0.90	4.99	0.59	0.050	0.020	4.00	87.948	1.50	1.50	24	0.00	3528.69	66.26	66.26	0.002
26	1.77	1.77	n/a	0.20	0.50	0.90	5.90	0.67				10.300	1.50	1.50	24	0.00	3715.69	66.27	66.44	0.167

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Flow Rate	Sf Ave	Sf Dn	Grate Area	Grate Len	Grate Width	Gnd/Rim El Dn	Gnd/Rim El Up	Gutter Depth	Gutter Slope	Gutter Spread	Gutter Width	HGL Dn	HGL Up	HGL Jnct	HGL Jmp Dn	HGL Jmp Up	Incr CxA	Incr Q	Inlet Depth	Inlet Eff
(cfs)	(ft/ft)	(ft/ft)	(sqft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(cfs)	(ft)	(%)
7.03	0.000	0.000				52.70	64.43					45.41	52.19 j	52.19	45.83	45.68	0.00	7.03		
7.03	0.000	0.000				64.43	73.00					52.19	54.35	54.35			0.00	7.03		
1.40	0.000	0.000				73.00	0.00	0.18	0.020	5.86	2.00	54.35	53.94	53.94			0.00	1.40	0.20	100
5.69	0.000	0.000				73.00	75.00					54.35	55.40 j	55.40	54.40	54.34	0.00	5.69		
2.10	0.000	0.000				75.00	74.04	0.28	Sag	11.20	2.00	66.56	66.82	66.82			0.00	2.10	0.28	100
4.38	0.000	0.000				75.00	76.50					55.40	56.67 j	56.67	55.46	55.39	0.00	4.38		
0.40	0.000	0.000				76.50	0.00	0.13	Sag	3.71	2.00	56.67	56.23	56.23			0.00	0.40	0.13	100
0.80	0.000	0.000				0.00	0.00	0.18	Sag	5.89	2.00	56.23	56.83	56.83			0.00	0.80	0.18	100
3.60	0.000	0.000				76.50	77.29					56.67	57.95 j	57.95	56.77	56.70	0.00	3.60		
3.60	0.000	0.000				77.29	0.00	0.27	0.010	10.31	2.00	57.95	58.02 j	58.02	57.94	57.93	0.00	3.60	0.27	63
16.37	2.431	2.431				49.95	59.38					52.84	57.39	57.59			0.00	16.37		
14.87	0.432	0.432				59.38	73.45					57.59	58.82	59.17			0.00	14.87		
1.50	0.000	0.000				73.45	73.44	0.18	0.020	6.05	2.00	69.10	69.26	69.26			0.00	1.50	0.18	41
14.36	0.403	0.403				73.45	76.02					59.17	59.75	59.94			0.00	14.36		
3.40	0.000	0.000				76.02	75.88	0.37	Sag	15.45	2.00	71.57	71.95	71.95			0.00	3.40	0.37	100
0.01	0.000	0.000				75.88	76.74					71.95	71.48	71.48			0.00	0.01		
12.12	0.287	0.287				76.02	79.08					59.94	62.24	62.47			0.00	12.12		
5.70	0.000	0.000				79.08	79.50	0.50	Sag	21.80	2.00	68.43	68.90	68.90			0.00	5.70	0.50	100
9.00	0.158	0.158				79.08	78.86					62.47	63.11	63.24			0.00	9.00		
2.00	0.000	0.000				78.86	79.00	0.22	0.010	8.05	2.00	66.87	67.43	67.43			0.00	2.00	0.22	62
8.82	0.152	0.152				78.86	66.92					63.24	64.86	64.96			0.00	8.82		
8.82	0.706	0.706				66.92	66.15					64.96	65.13	65.47			0.00	8.82		
5.30	0.255	0.255				66.15	64.64					65.47	65.52	65.66			0.00	5.30		

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Flow Rate	Sf Ave	Sf Dn	Grate Area	Grate Len	Grate Width	Gnd/Rim El Dn	Gnd/Rim El Up	Gutter Depth	Gutter Slope	Gutter Spread	Gutter Width	HGL Dn	HGL Up	HGL Jnct	HGL Jmp Dn	HGL Jmp Up	Incr CxA	Incr Q	Inlet Depth	Inlet Eff
(cfs)	(ft/ft)	(ft/ft)	(sqft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(cfs)	(ft)	(%)
5.24	0.249	0.249				66.15	64.43			••••		65.47	66.09	66.23			0.00	5.24		
2.45	0.054	0.054				64.43	64.58	0.33	Sag	13.48	2.00	66.23	66.23	66.26			0.00	2.45	0.33	100
3.11	0.088	0.088				64.43	63.00					66.23	66.39	66.44			0.00	3.11		

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Inlet ID	Inlet Loc		Inlet Time	i Sys	i Inlet	Invert Dn	Invert Up	Jump Loc	Jump Len	Vel Hd Jmp Dn	Vel Hd Jmp Up	J-Loss Coeff	Junct Type	Known Q	Cost RCP	Cost CMP	Cost PVC	
		(ft)	(min)	(in/hr)	(in/hr)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			(cfs)				
	Sag		0.0	0.00	0.00	44.10	51.16	21.00	5.13	0.46	1.19	0.15 z	МН	7.03	11,685	10,517	9,932	
	Sag		0.0	0.00	0.00	51.20	53.32			0.00	0.00	1.00 z	МН	7.03	14,943	13,448	12,701	
	On Grade		0.0	0.00	0.00	53.30	53.50			0.00	0.00	1.00 z	Curb	1.40	313	281	266	
	Sag		0.0	0.00	0.00	53.36	54.48	11.18	4.62	0.39	0.52	1.00 z	МН	5.69	8,363	7,526	7,108	
	Sag		0.0	0.00	0.00	66.10	66.27			0.00	0.00	1.00 z	Curb	2.10	963	866	818	
	Sag		0.0	0.00	0.00	54.52	55.87	13.33	4.01	0.32	0.47	0.88 z	МН	4.38	9,975	8,978	8,479	
	Sag		0.0	0.00	0.00	55.89	56.00			0.00	0.00	1.07 z	Curb	0.40	638	574	542	
	Sag		0.0	0.00	0.00	55.90	56.50			0.00	0.00	1.00 z	Curb	0.80	2,036	1,832	1,731	
	Sag		0.0	0.00	0.00	55.91	57.23	13.11	3.62	0.28	0.43	0.99 z	МН	3.60	9,825	8,843	8,351	
	On Grade		0.0	0.00	0.00	57.20	57.30	0.50	2.50	0.28	0.34	1.00 z	Curb	3.60	278	250	236	
New	Sag		0.0	0.00	0.00	43.05	51.06			0.00	0.00	0.15	МН	16.37	8,765	7,889	7,450	
New	Sag		0.0	0.00	0.00	51.06	51.92			0.00	0.00	1.00	МН	14.87	21,168	19,051	17,992	
	On Grade		0.0	0.00	0.00	68.72	68.80			0.00	0.00	1.00 z	Curb	1.50	440	396	374	
	Sag		0.0	0.00	0.00	51.93	52.36			0.00	0.00	0.58	МН	14.36	12,155	10,940	10,332	
	Sag		0.0	0.00	0.00	70.98	71.25			0.00	0.00	0.50 z	Curb	3.40	1,200	1,080	1,020	
	Sag		0.0	0.00	0.00	71.29	71.44			0.00	0.00	1.00 z	МН	0.01	720	648	612	
	Sag		0.0	0.00	0.00	52.37	54.75			0.00	0.00	1.00	МН	12.12	68,000	61,200	57,800	
	Sag		0.0	0.00	0.00	67.64	67.98			0.00	0.00	1.00 z	Curb	5.70	2,020	1,818	1,717	
	Sag		0.0	0.00	0.00	54.77	55.97			0.00	0.00	1.00	MH	9.00	34,468	31,021	29,297	
	On Grade		0.0	0.00	0.00	66.43	66.90			0.00	0.00	1.00 z	Curb	2.00	2,980	2,682	2,533	
	Sag		0.0	0.00	0.00	55.98	59.12			0.00	0.00	0.87	МН	8.82	79,432	71,488	67,517	
	Sag		0.0	0.00	0.00	59.12	59.19			0.00	0.00	0.88	МН	8.82	1,165	1,049	990	
	Sag		0.0	0.00	0.00	59.20	59.26			0.00	0.00	1.00	MH	5.30	1,023	920	869	

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

NOTES: Known Qs only.; ** Critical depth

Inlet ID	Inlet Loc		Inlet Time	i Sys	i Inlet	Invert Dn	Invert Up	Jump Loc	Jump Len	Vel Hd Jmp Dn	Vel Hd Jmp Up	J-Loss Coeff	Junct Type	Known Q	Cost RCP	Cost CMP	Cost PVC	
		(ft)	(min)	(in/hr)	(in/hr)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			(cfs)				
	Sag		0.0	0.00	0.00	59.20	59.97			0.00	0.00	1.00	МН	5.24	10,595	9,536	9,006	
	Sag		0.0	0.00	0.00	59.98	59.99			0.00	0.00	1.00	Curb	2.45	280	252	238	
	Sag		0.0	0.00	0.00	60.00	60.60			0.00	0.00	1.00	МН	3.11	6,500	5,850	5,525	
roject F	ile: moonlight	Phases 1	C 1E.stn	n								N	umber of lines	s: 26		Date	e: 7/27/20	20

NOTES: Known Qs only.; ** Critical depth

Storm Sewers

Line ID	Line Length	Line Size	Line Slope	Line Type	Local Depr	n-val Gutter	n-val Pipe	Minor Loss	Northing Y	Pipe Travel	Q Byp	Q Capt	Q Carry	Line Rise	Runoff Coeff	Line Span	Area A1	Area A2	Area A3
	(ft)	(in)	(%)		(in)			(ft)	(ft)	(min)	(cfs)	(cfs)	(cfs)	(in)	(C)	(in)	(ac)	(ac)	(ac)
PHASE 1 C MAIN	210.000	18	3.36	Cir			0.013	n/a	203.69	0.88				18	0.00	18	0.00	0.00	0.00
PHASE 1 C MAIN	215.000	18	0.99	Cir			0.013	n/a	200.91	0.90				18	0.00	18	0.00	0.00	0.00
A 58 Lateral 2 (No Profile)	6.000	18	3.33	Cir	0.33	0.013	0.013	n/a	206.91	0.13	0.00	1.40	0.00	18	0.00	18	0.00	0.00	0.00
PHASE 1 C MAIN	111.800	18	1.00	Cir			0.013	n/a	201.93	0.58				18	0.00	18	0.00	0.00	0.00
A56 Lateral 3 16+25	17.200	18	0.99	Cir	0.0		0.013	0.20	219.13	0.24	0.00	2.10	0.00	18	0.00	18	0.00	0.00	0.00
PHASE 1 C MAIN	133.260	18	1.01	Cir			0.013	n/a	200.21	0.90				18	0.00	18	0.00	0.00	0.00
A55 Lateral 5 (No Profile)	14.700	18	0.75	Cir	0.0		0.013	0.09	212.71	1.08	0.00	0.40	0.00	18	0.00	18	0.00	0.00	0.00
A55 Lateral 5 (No Profile)	60.530	18	0.99	Cir	0.0		0.013	n/a	229.62	2.23	0.00	0.80	0.00	18	0.00	18	0.00	0.00	0.00
PHASE 1 C MAIN	131.100	18	1.01	Cir			0.013	n/a	206.40	1.07				18	0.00	18	0.00	0.00	0.0
A 54 Lateral 6 (No Profile)	5.000	18	2.00	Cir	0.0	0.013	0.013	n/a	211.34	0.04	1.34	2.26	0.00	18	0.00	18	0.00	0.00	0.0
EX 18 INCH	187.250	18	4.28	Cir			0.013	0.20	43.91	0.34				18	0.00	18	0.00	0.00	0.0
PHASE 1 E MAIN	285.000	24	0.30	Cir			0.013	0.35	49.30	1.00				24	0.00	24	0.00	0.00	0.0
LAT 14+96.96	8.000	18	1.00	Cir	0.0	0.013	0.013	n/a	57.30	0.16	0.89	0.61	0.00	18	0.00	18	0.00	0.00	0.0
PHASE 1 E MAIN	143.410	24	0.30	Cir			0.013	0.19	52.02	0.52				24	0.00	24	0.00	0.00	0.0
LAT 4 16+44.34	27.000	18	1.00	Cir	0.0		0.013	n/a	38.41	0.23	0.00	3.40	0.00	18	0.00	18	0.00	0.00	0.0
LAT 4 16+44.34	15.000	18	1.00	Cir			0.013	n/a	30.85	44.18				18	0.00	18	0.00	0.00	0.0
PHASE 1 E MAIN	800.000	24	0.30	Cir			0.013	0.23	67.17	3.46				24	0.00	24	0.00	0.00	0.0
LAT 24+45.71	34.000	18	1.00	Cir	0.0		0.013	n/a	101.15	0.18	0.00	5.70	0.00	18	0.00	18	0.00	0.00	0.0
PHASE 1 E MAIN	405.900	24	0.30	Cir			0.013	0.13	66.86	2.36				24	0.00	24	0.00	0.00	0.0
LAT 28+53.97	47.000	18	1.00	Cir	0.0	0.013	0.013	n/a	113.81	0.69	0.76	1.24	0.00	18	0.00	18	0.00	0.00	0.0
PHASE 1 E MAIN	1063.000	24	0.30	Cir			0.013	0.11	56.82	6.31				24	0.00	24	0.00	0.00	0.0
BASIN LAT 38+94.76 B	23.200	18	0.30	Cir			0.013	0.34	37.01	0.08				18	0.00	18	0.00	0.00	0.0
BASIN LAT 38+94.76 A	21.000	18	0.29	Cir			0.013	0.14	19.28	0.12				18	0.00	18	0.00	0.00	0.0

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Line ID	Line Length	Line Size	Line Slope	Line Type	Local Depr	n-val Gutter	n-val Pipe	Minor Loss	Northing Y	Pipe Travel	Q Byp	Q Capt	Q Carry	Line Rise	Runoff Coeff	Line Span	Area A1	Area A2	Area A3
	(ft)	(in)	(%)		(in)			(ft)	(ft)	(min)	(cfs)	(cfs)	(cfs)	(in)	(C)	(in)	(ac)	(ac)	(ac)
E.P. LAT 41+75	250.000	18	0.31	Cir			0.013	0.14	38.90	1.41				18	0.00	18	0.00	0.00	0.00
E.P. CURB INLET	4.430	18	0.23	Cir	0.0		0.013	0.03	34.47	0.05	0.00	2.45	0.00	18	0.00	18	0.00	0.00	0.00
BASIN LAT 43+50	190.000	18	0.32	Cir			0.013	0.05	6.34	1.80				18	0.00	18	0.00	0.00	0.00

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Тс	Throat Ht	Total Area	Total CxA	Total Runoff	Vel Ave	Vel Dn	Vel Hd Dn	Vel Hd Up	Vel Up	Cover Dn	Cover Up	Storage		
(min)	(in)	(ac)		(cfs)	(ft/s)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(cft)		
5.7		0.00	0.00	0.00	4.88	4.29	0.46	0.46	5.46	7.10	11.77	309.00		
4.8		0.00	0.00	0.00	5.59	5.71	0.46	0.46	5.46	11.73	18.18	270.73		
0.0	4.0	0.00	0.00	0.00	2.14	1.06	0.16	0.16	3.21	18.20	n/a	5.25		
4.2		0.00	0.00	0.00	4.82	4.62	0.39	0.39	5.01	18.14	19.02	132.32		
0.0	6.0	0.00	0.00	0.00	4.11	4.62	0.20	0.20	3.61	7.40	6.27	8.91		
3.3		0.00	0.00	0.00	4.31	4.07	0.32	0.32	4.56	18.98	19.13	135.83		
2.2	6.0	0.00	0.00	0.00	1.36	0.43	0.08	0.08	2.28	19.11	n/a	7.87		
0.0	6.0	0.00	0.00	0.00	2.74	2.73	0.12	0.12	2.75	n/a	n/a	17.67		
0.0		0.00	0.00	0.00	4.13	3.99	0.28	0.28	4.26	19.09	18.56	114.43		
0.0	6.0	0.00	0.00	0.00	4.16	4.05	0.28	0.28	4.26	18.59	n/a	4.33		
45.9		0.00	0.00	0.00	9.26	9.27	1.33	1.33	9.26	5.40	6.82	330.83		
44.9		0.00	0.00	0.00	4.73	4.73	0.35	0.35	4.73	6.32	19.53	895.18		
0.0	6.0	0.00	0.00	0.00	3.74	4.21	0.17	0.17	3.27	3.23	3.14	3.26		
44.4		0.00	0.00	0.00	4.57	4.57	0.32	0.32	4.57	19.52	21.66	450.45		
44.2	6.0	0.00	0.00	0.00	4.74	5.30	0.27	0.27	4.18	3.54	3.13	19.62		
0.0		0.00	0.00	0.00	0.45	0.01	0.01	0.01	0.89	3.09	3.80	5.04		
12.0		0.00	0.00	0.00	3.86	3.86	0.23	0.23	3.86	21.65	22.33	2512.78		
0.0	6.0	0.00	0.00	0.00	5.54	6.06	0.39	0.39	5.01	9.94	10.02	35.32		
9.6		0.00	0.00	0.00	2.87	2.87	0.13	0.13	2.86	22.31	20.89	1274.92		
0.0	6.0	0.00	0.00	0.00	4.07	4.58	0.20	0.20	3.56	10.93	10.60	23.47		
3.3		0.00	0.00	0.00	2.81	2.81	0.12	0.12	2.81	20.88	5.80	3338.85		
3.2		0.00	0.00	0.00	4.99	4.99	0.39	0.39	4.99	6.30	5.46	40.99		
0.0		0.00	0.00	0.00	3.00	3.00	0.14	0.14	3.00	5.45	3.88	37.10		
Proiect I	File: moo	l nlight Ph	nases 10	L 1E.stm									Number of lines: 26	Date: 7/27/2020

Тс	Throat Ht	Total Area	Total CxA	Total Runoff	Vel Ave	Vel Dn	Vel Hd Dn	Vel Hd Up	Vel Up	Cover Dn	Cover Up	Storage
(min)	(in)	(ac)		(cfs)	(ft/s)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(cft)
1.8		0.00	0.00	0.00	2.97	2.97	0.14	0.14	2.97	5.45	2.96	441.70
0.0	4.0	0.00	0.00	0.00	1.39	1.39	0.03	0.03	1.39	2.95	3.09	7.83
0.0		0.00	0.00	0.00	1.76	1.76	0.05	0.05	1.76	2.93	0.90	335.69
Proiect	File: moo	nlight Ph	nases 10	L C1E.stm								

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upsti	ream				Chec	k	JL "	Minor
			Invert	HGL elev	Depth		Vel	Vel head	EGL elev	Sf	(50)	Invert	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf	Ave Sf	Enrgy	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
1	18	7.03	44.10	45.41	1.31	1.29	4.29	0.46	45.87	0.000	210.00	051.16	52.19 i	1.03**	1.29	5.46	0.46	52.65	0.000	0.000	n/a	0.15	n/a
2	18	7.03	51.20	52.19	0.99	1.23	5.71	0.46	52.65	0.000		053.32	54.35	1.03**	1.29	5.46	0.46	54.81	0.000	0.000	n/a	1.00	n/a
3	18	1.40	53.30	54.35	1.05	0.44	1.06	0.16	54.51	0.000	6.000	53.50	53.94	0.44**	0.44	3.21	0.16	54.10	0.000	0.000	n/a	1.00	n/a
4	18	5.69	53.36	54.35	0.99	1.14	4.62	0.39	54.74	0.000	111.80	054.48	55.40 j	0.92**	1.14	5.01	0.39	55.79	0.000	0.000	n/a	1.00	0.39
5	18	2.10	66.10	66.56	0.46*	0.45	4.62	0.20	66.76	0.000	17.200	66.27	66.82	0.55**	0.58	3.61	0.20	67.02	0.000	0.000	n/a	1.00	0.20
6	18	4.38	54.52	55.40	0.88	0.96	4.07	0.32	55.72	0.000	133.26	055.87	56.67 j	0.80**	0.96	4.56	0.32	56.99	0.000	0.000	n/a	0.88	0.28
7	18	0.40	55.89	56.67	0.78	0.18	0.43	0.08	56.75	0.000	14.700	56.00	56.23	0.23**	0.18	2.28	0.08	56.31	0.000	0.000	n/a	1.07	0.09
8	18	0.80	55.90	56.23	0.33	0.29	2.73	0.12	56.35	0.000	60.530	56.50	56.83	0.33**	0.29	2.75	0.12	56.95	0.000	0.000	n/a	1.00	n/a
9	18	3.60	55.91	56.67	0.76	0.84	3.99	0.28	56.95	0.000	131.10	057.23	57.95 j	0.72**	0.84	4.26	0.28	58.24	0.000	0.000	n/a	0.99	n/a
10	18	3.60	57.20	57.95	0.75	0.84	4.05	0.28	58.24	0.000	5.000	57.30	58.02 j	0.72**	0.84	4.26	0.28	58.31	0.000	0.000	n/a	1.00	n/a
11	18	16.37	43.05	52.84	1.50	1.77	9.27	1.33	54.17	2.431	187.25	051.06	57.39	1.50	1.77	9.26	1.33	58.73	2.430	2.431	4.551	0.15	0.20
12	24	14.87	51.06	57.59	2.00	3.14	4.73	0.35	57.94	0.432	285.00	051.92	58.82	2.00	3.14	4.73	0.35	59.17	0.432	0.432	1.232	1.00	0.35
13	18	1.50	68.72	69.10	0.38*	0.36	4.21	0.17	69.27	0.000	8.000	68.80	69.26	0.46**	0.46	3.27	0.17	69.43	0.000	0.000	n/a	1.00	n/a
14	24	14.36	51.93	59.17	2.00	3.14	4.57	0.32	59.50	0.403	143.41	052.36	59.75	2.00	3.14	4.57	0.32	60.08	0.403	0.403	0.578	0.58	0.19
15	18	3.40	70.98	71.57	0.59*	0.64	5.30	0.27	71.84	0.000	27.000	71.25	71.95	0.70**	0.81	4.18	0.27	72.22	0.000	0.000	n/a	0.50	n/a
16	18	0.01	71.29	71.95	0.66	0.01	0.01	0.01	71.96	0.000	15.000	71.44	71.48	0.04**	0.01	0.89	0.01	71.49	0.000	0.000	n/a	1.00	n/a
17	24	12.12	52.37	59.94	2.00	3.14	3.86	0.23	60.17	0.287	800.00	054.75	62.24	2.00	3.14	3.86	0.23	62.47	0.287	0.287	2.298	1.00	0.23
18	18	5.70	67.64	68.43	0.79*	0.94	6.06	0.39	68.82	0.000	34.000	67.98	68.90	0.92**	1.14	5.01	0.39	69.29	0.000	0.000	n/a	1.00	n/a
19	24	9.00	54.77	62.47	2.00	3.14	2.87	0.13	62.60	0.158	405.90	055.97	63.11	2.00	3.14	2.86	0.13	63.24	0.158	0.158	0.643	1.00	0.13
20	18	2.00	66.43	66.87	0.44*	0.44	4.58	0.20	67.07	0.000	47.000	66.90	67.43	0.53**	0.56	3.56	0.20	67.63	0.000	0.000	n/a	1.00	n/a
21	24	8.82	55.98	63.24	2.00	3.14	2.81	0.12	63.36	0.152	1063.0	05 9.12	64.86	2.00	3.14	2.81	0.12	64.98	0.152	0.152	1.617	0.87	0.11
22	18	8.82	59.12	64.96	1.50	1.77	4.99	0.39	65.35	0.706	23.200	59.19	65.13	1.50	1.77	4.99	0.39	65.51	0.705	0.706	0.164	0.88	0.34

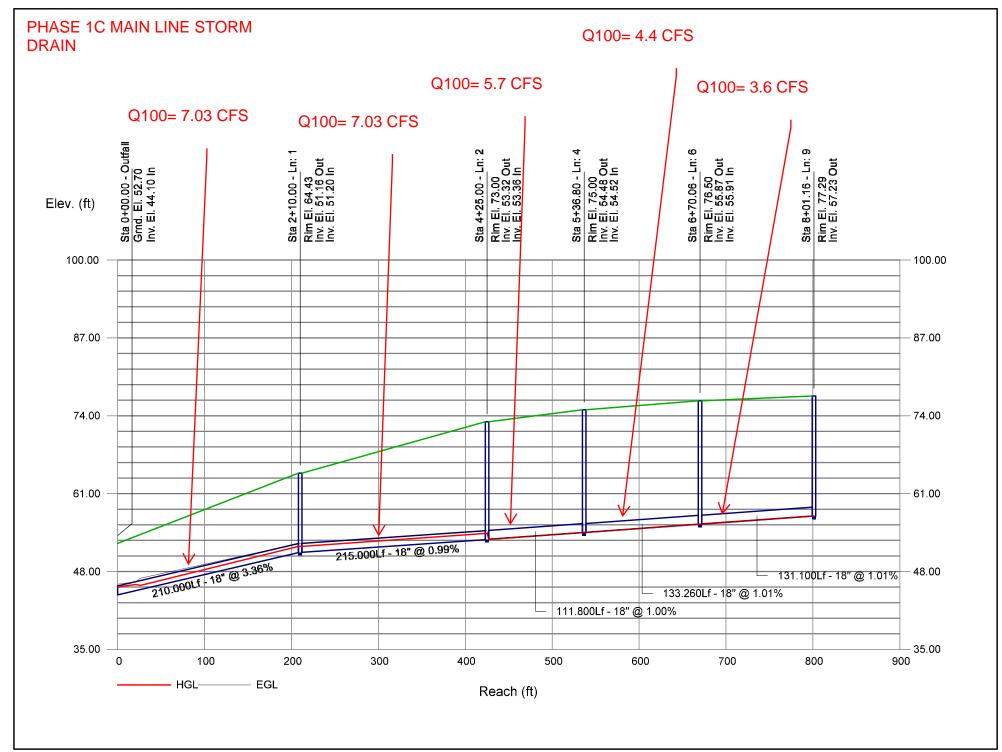
Project File: moonlight Phases 1C 1E.stm

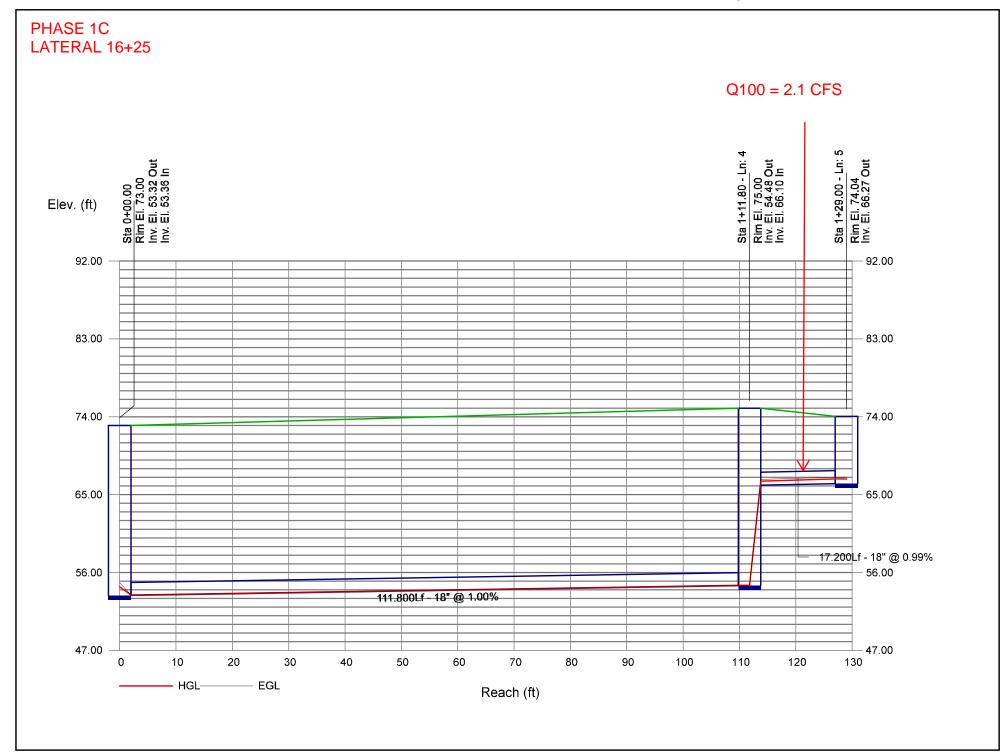
Number of lines: 26

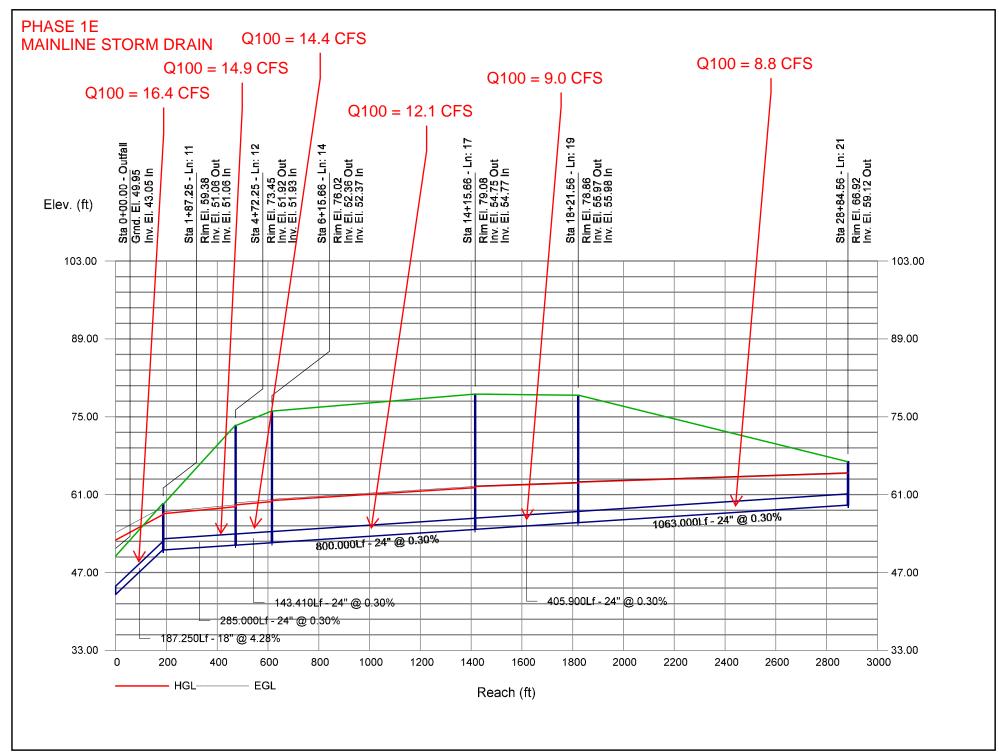
Run Date: 7/27/2020

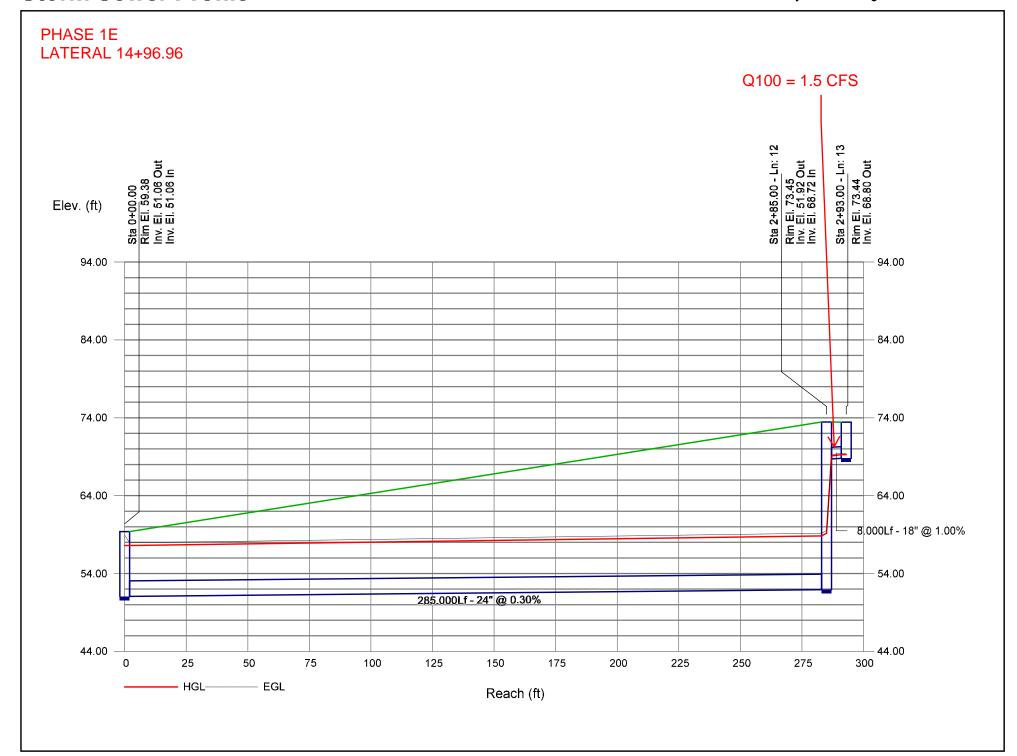
Notes: * Normal depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

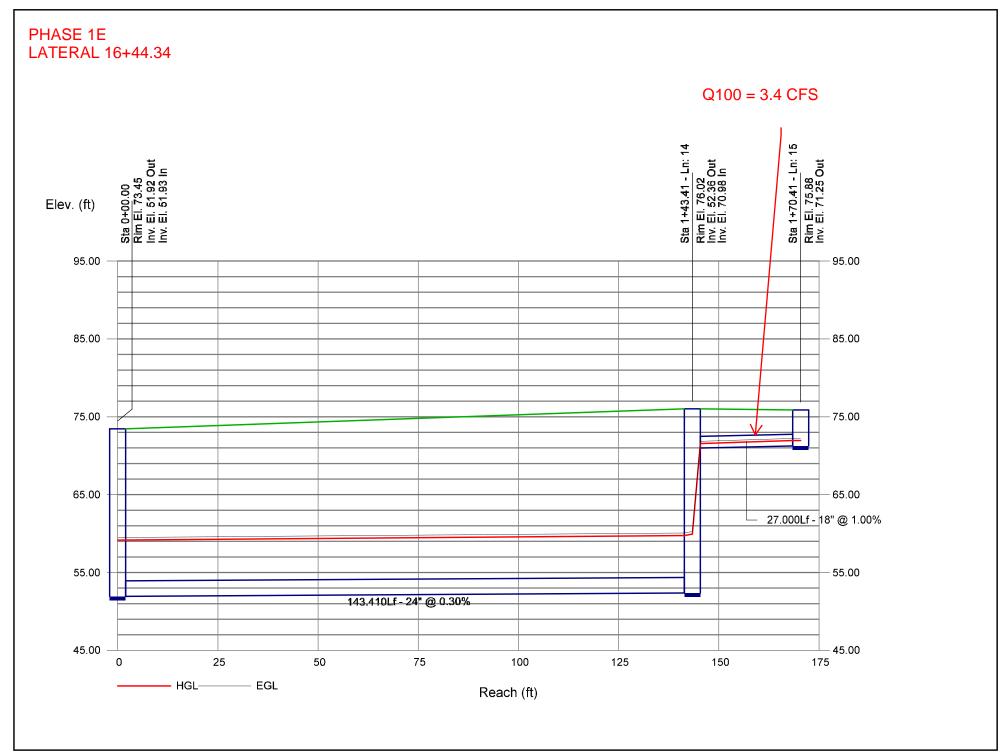
Hydraulic Grade Line Computations

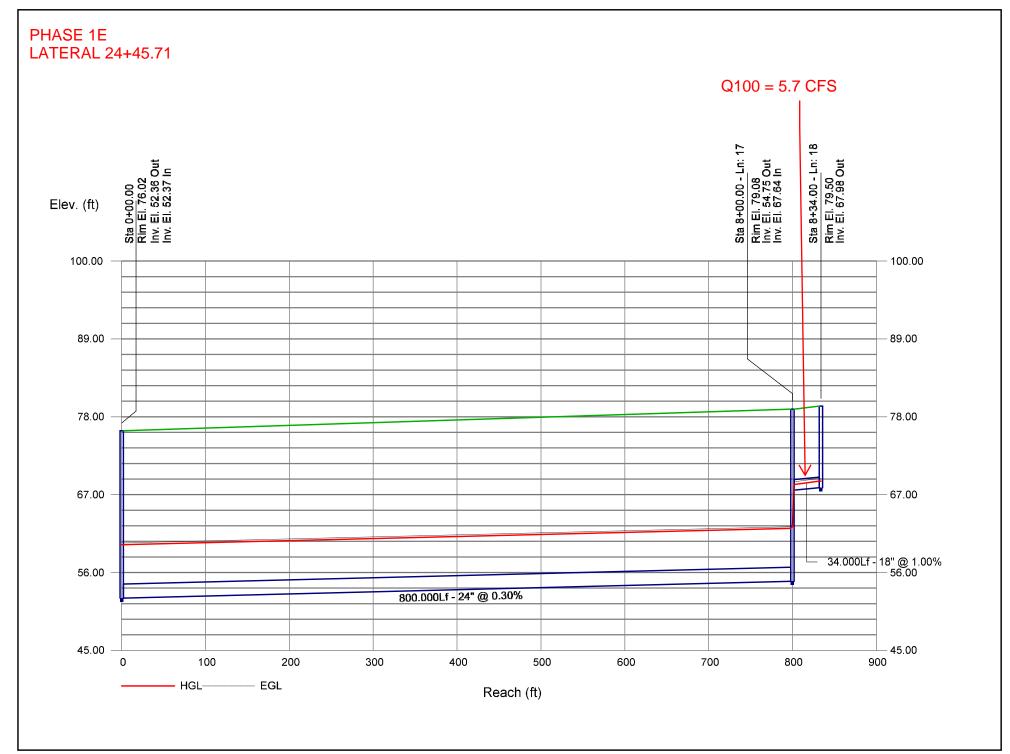

Line	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL _	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	VeI (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
	,,	()	\(\frac{1}{2}\)	(,		1 1 1	(,			,		(/	(/	(,	(-4-7	(/	\(\frac{1}{2}\)	(,	(1.5)	,			
23	18	5.30	59.20	65.47	1.50	1.77	3.00	0.14	65.61	0.255	21.000	59.26	65.52	1.50	1.77	3.00	0.14	65.66	0.255	0.255	0.054	1.00	0.14
24	18	5.24	59.20	65.47	1.50	1.77	2.97	0.14	65.60	0.249	250.00	059.97	66.09	1.50	1.77	2.97	0.14	66.23	0.249	0.249	0.623	1.00	0.14
25	18	2.45	59.98	66.23	1.50	1.77	1.39	0.03	66.26	0.054	4.430	59.99	66.23	1.50	1.77	1.39	0.03	66.26	0.054	0.054	0.002	1.00	0.03
26	18	3.11	60.00	66.23	1.50	1.77	1.76	0.05	66.27	0.088	190.00	060.60	66.39	1.50	1.77	1.76	0.05	66.44	0.088	0.088	0.167	1.00	0.05

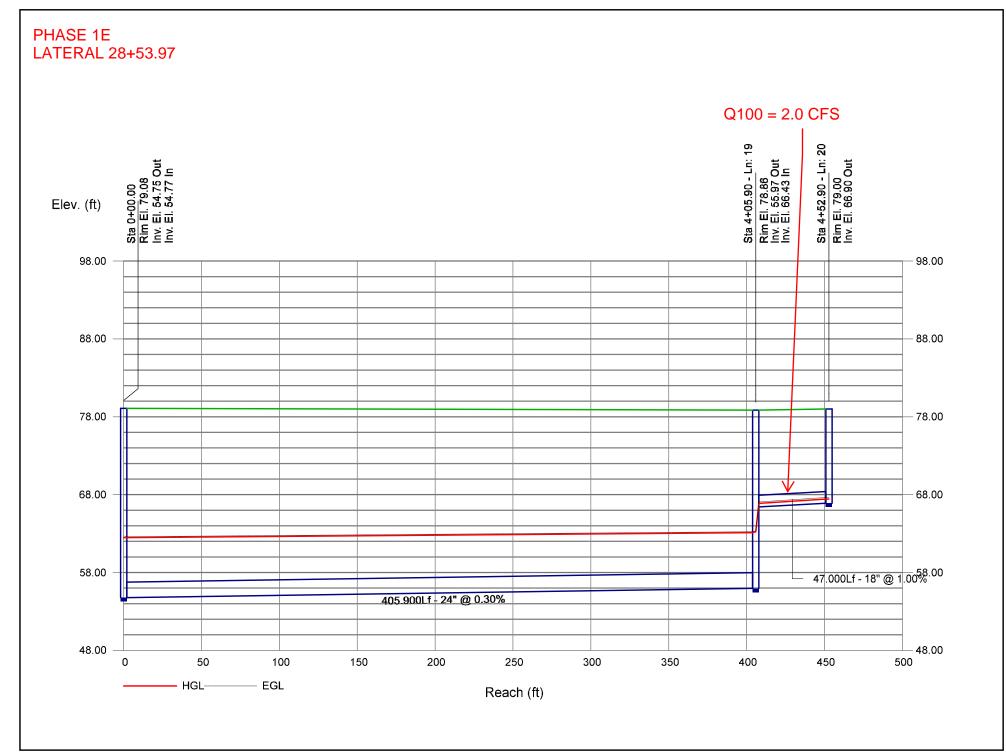

Notes: * Normal depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

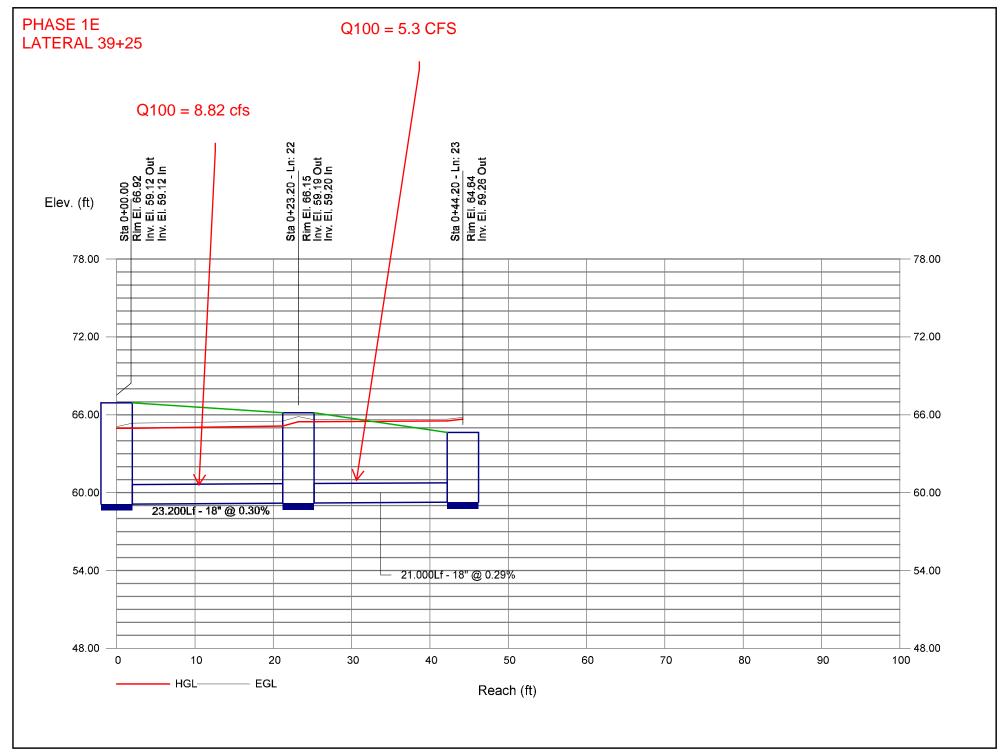

Project File: moonlight Phases 1C 1E.stm

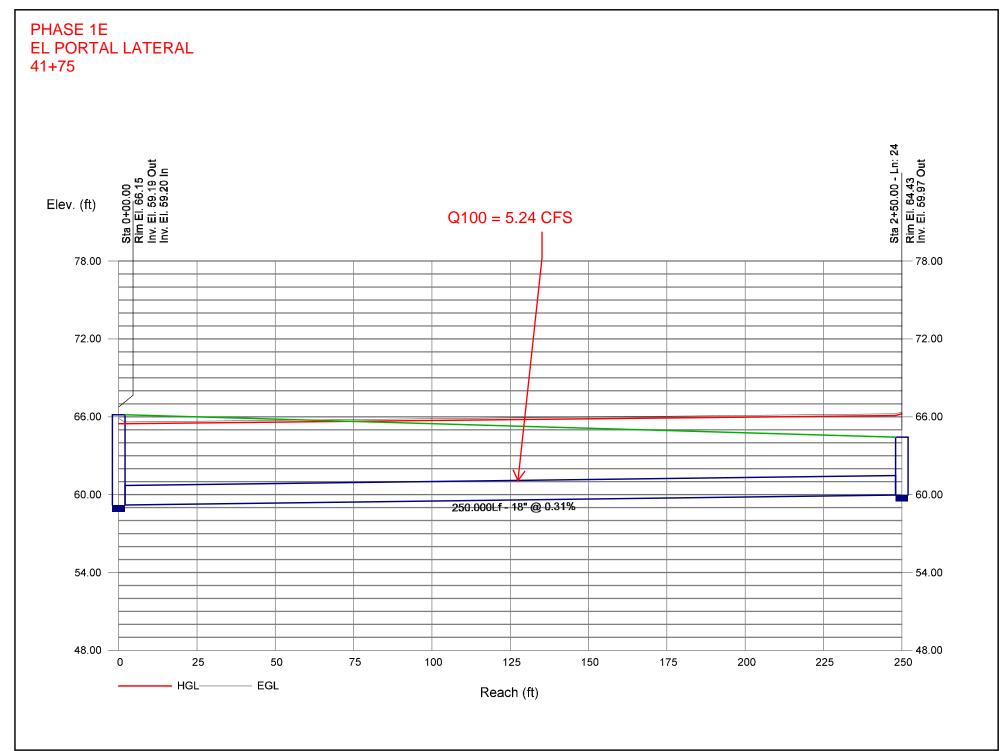

Run Date: 7/27/2020


Number of lines: 26

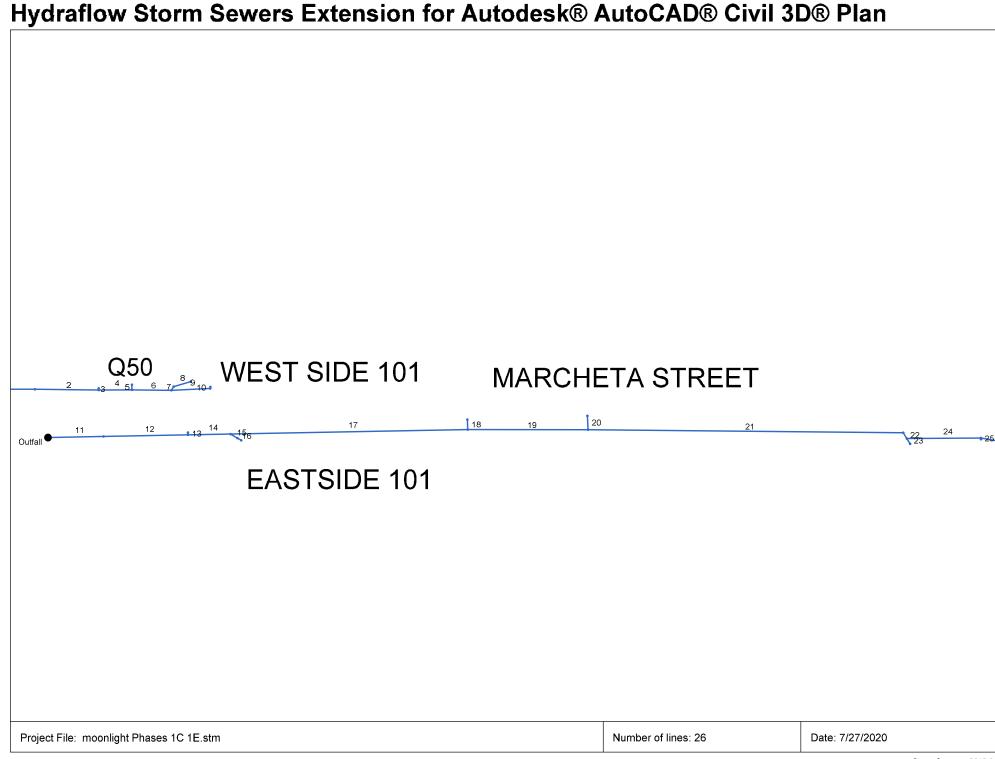











Appendix F – 50 Year Storm Drain Phases 1C and 1E

Included within this appendix:

50 Year Pipe Results Summary

Michael Baker

50 Year Pipe Results

Structure Report

Project File: moonlight Phases 1C 1E.stm

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		Manhole	64.43	Cir	4.00	4.00	18	Cir	51.16	18	Cir	51.20
2		Manhole	73.00	Cir	4.00	4.00	18	Cir	53.32	18 18	Cir Cir	53.30 53.36
3		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	53.50			
4		Manhole	75.00	Cir	4.00	4.00	18	Cir	54.48	18 18	Cir Cir	66.10 54.52
5		Curb-Horiz	74.04	Cir	4.00	4.00	18	Cir	66.27			
6		Manhole	76.50	Cir	4.00	4.00	18	Cir	55.87	18 18	Cir Cir	55.89 55.91
7		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	56.00	18	Cir	55.90
8		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	56.50			
9		Manhole	77.29	Cir	4.00	4.00	18	Cir	57.23	18	Cir	57.20
10		Curb-Horiz	0.00	Cir	4.00	4.00	18	Cir	57.30			
11	New	Manhole	59.38	Cir	4.00	4.00	18	Cir	51.06	24	Cir	51.06
12	New	Manhole	73.45	Cir	4.00	4.00	24	Cir	51.92	18 24	Cir Cir	68.72 51.93
13		Curb-Horiz	73.44	Cir	4.00	4.00	18	Cir	68.80			
14		Manhole	76.02	Cir	4.00	4.00	24	Cir	52.36	18 24	Cir Cir	70.98 52.37
15		Curb-Horiz	75.88	Cir	4.00	4.00	18	Cir	71.25	18	Cir	71.29
16		Manhole	76.74	Cir	4.00	4.00	18	Cir	71.44			
17		Manhole	79.08	Cir	4.00	4.00	24	Cir	54.75	18 24	Cir Cir	67.64 54.77
18		Curb-Horiz	79.50	Cir	4.00	4.00	18	Cir	67.98			
19		Manhole	78.86	Cir	4.00	4.00	24	Cir	55.97	18 24	Cir Cir	66.43 55.98

Number of Structures: 26

Storm Sewers v2018.30

Run Date: 7/27/2020

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape		Size (in)	Shape	Invert (ft)
20		Curb-Horiz	79.00	Cir	4.00	4.00	18	Cir	66.90			
21		Manhole	66.92	Cir	4.00	4.00	24	Cir	59.12	18	Cir	59.12
22		Manhole	66.15	Cir	4.00	4.00	18	Cir	59.19	18 18	Cir Cir	59.20 59.20
23		Manhole	64.64	Cir	4.00	4.00	18	Cir	59.26			
24		Manhole	64.43	Cir	4.00	4.00	18	Cir	59.97	18 18	Cir Cir	59.98 60.00
25		Curb-Horiz	64.58	Cir	4.00	4.00	18	Cir	59.99			
26		Manhole	63.00	Cir	4.00	4.00	18	Cir	60.60			
Project F	File: moonlight Phases 1C 1E.	stm	umber of Structu	res: 26	Run D	Date: 7/27/2020)					

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	PHASE 1 C MAIN	6.00	18	Cir	210.000	44.10	51.16	3.362	45.41	52.11	n/a	52.11 j	End	Manhole
2	PHASE 1 C MAIN	6.00	18	Cir	215.000	51.20	53.32	0.986	52.11	54.27	0.41	54.27	1	Manhole
3	A 58 Lateral 2 (No Profile)	1.20	18	Cir	6.000	53.30	53.50	3.333	54.27	53.91	n/a	53.91	2	Curb-Horiz
4	PHASE 1 C MAIN	4.87	18	Cir	111.800	53.36	54.48	1.002	54.27	55.33	n/a	55.33 j	2	Manhole
5	A56 Lateral 3 16+25	1.80	18	Cir	17.200	66.10	66.27	0.988	66.52	66.77	n/a	66.77	4	Curb-Horiz
6	PHASE 1 C MAIN	3.75	18	Cir	133.260	54.52	55.87	1.013	55.33	56.61	n/a	56.61 j	4	Manhole
7	A55 Lateral 5 (No Profile)	0.30	18	Cir	14.700	55.89	56.00	0.748	56.61	56.20	n/a	56.20	6	Curb-Horiz
8	A55 Lateral 5 (No Profile)	0.70	18	Cir	60.530	55.90	56.50	0.991	56.20	56.81	n/a	56.81	7	Curb-Horiz
9	PHASE 1 C MAIN	3.10	18	Cir	131.100	55.91	57.23	1.007	56.61	57.90	n/a	57.90 j	6	Manhole
10	A 54 Lateral 6 (No Profile)	3.10	18	Cir	5.000	57.20	57.30	2.000	57.90	57.97	n/a	57.97 j	9	Curb-Horiz
11	EX 18 INCH	13.56	18	Cir	187.250	43.05	51.06	4.278	52.84*	55.96*	0.14	56.10	End	Manhole
12	PHASE 1 E MAIN	12.27	24	Cir	285.000	51.06	51.92	0.302	56.10*	56.94*	0.24	57.18	11	Manhole
13	LAT 14+96.96	1.30	18	Cir	8.000	68.72	68.80	1.000	69.08	69.23	n/a	69.23	12	Curb-Horiz
14	PHASE 1 E MAIN	11.83	24	Cir	143.410	51.93	52.36	0.300	57.18*	57.57*	0.13	57.70	12	Manhole
15	LAT 4 16+44.34	3.00	18	Cir	27.000	70.98	71.25	1.000	71.53	71.91	0.13	71.91	14	Curb-Horiz
16	LAT 4 16+44.34	0.01	18	Cir	15.000	71.29	71.44	1.000	71.91	71.48	n/a	71.48	15	Manhole
17	PHASE 1 E MAIN	9.88	24	Cir	800.000	52.37	54.75	0.298	57.70*	59.22*	0.15	59.38	14	Manhole
18	LAT 24+45.71	5.00	18	Cir	34.000	67.64	67.98	1.000	68.37	68.84	0.35	68.84	17	Curb-Horiz
19	PHASE 1 E MAIN	7.76	24	Cir	405.900	54.77	55.97	0.296	59.38*	59.86*	0.09	59.95	17	Manhole
20	LAT 28+53.97	1.80	18	Cir	47.000	66.43	66.90	1.000	66.85	67.40	n/a	67.40	19	Curb-Horiz
21	PHASE 1 E MAIN	6.99	24	Cir	1063.000	55.98	59.12	0.295	59.95	60.90	0.08	60.97	19	Manhole
22	BASIN LAT 38+94.76 B	6.99	18	Cir	23.200	59.12	59.19	0.302	60.97*	61.08*	0.21	61.29	21	Manhole
23	BASIN LAT 38+94.76 A	4.80	18	Cir	21.000	59.20	59.26	0.286	61.29*	61.34*	0.11	61.45	22	Manhole
24	E.P. LAT 41+75	4.58	18	Cir	250.000	59.20	59.97	0.308	61.29*	61.77*	0.10	61.87	22	Manhole

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Run Date: 7/27/2020

NOTES: Known Qs only; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	E.P. CURB INLET	2.20	18	Cir	4.430	59.98	59.99	0.226	61.87*	61.87*	0.02	61.90	24	Curb-Horiz
25 26	E.P. CURBINLET BASIN LAT 43+50	2.70	18	Cir	4.430		59.99 60.60	0.226	61.87*	61.87*	0.02	61.90 62.03	24	Manhole

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Run Date: 7/27/2020

NOTES: Known Qs only; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb Ir	nlet	Gra	ite Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	(cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n		Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1		6.00*	0.00	0.00	6.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
2		6.00*	0.00	0.00	6.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
3		1.20*	0.00	1.20	0.00	Curb	4.0	16.76	0.00	0.00	0.00	0.020	2.00	0.050	0.020	0.013	0.17	5.43	0.03	0.00	0.3	2
4		4.87*	0.00	0.00	4.87	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
5		1.80*	0.00	1.80	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.26	10.11	0.26	10.11	0.0	Off
6		3.75*	0.00	0.00	3.75	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
7		0.30*	0.00	0.30	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.12	3.06	0.12	3.06	0.0	Off
8		0.70*	0.00	0.70	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.17	5.38	0.17	5.38	0.0	Off
9		3.10*	1.04	0.00	4.14	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
10		3.10*	0.00	2.06	1.04	Curb	6.0	11.00	0.00	0.00	0.00	0.010	2.00	0.050	0.020	0.013	0.25	9.69	0.18	5.99	0.0	9
11	New	13.56*	0.00	0.00	13.56	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
12	New	12.27*	0.73	0.00	13.00	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
13		1.30*	0.00	0.57	0.73	Curb	6.0	5.00	0.00	0.00	0.00	0.020	2.00	0.050	0.020	0.013	0.17	5.65	0.14	4.19	0.0	12
14		11.83*	0.00	0.00	11.83	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
15		3.00*	0.00	3.00	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.34	14.21	0.34	14.21	0.0	Off
16		0.01*	0.00	0.00	0.01	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
17		9.88*	0.00	0.00	9.88	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
18		5.00*	0.00	5.00	0.00	Curb	6.0	5.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.46	19.98	0.46	19.98	0.0	Off
19		7.76*	0.64	0.00	8.40	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
20		1.80*	0.00	1.16	0.64	Curb	6.0	8.00	0.00	0.00	0.00	0.010	2.00	0.050	0.020	0.013	0.21	7.69	0.15	4.69	0.0	19
21		6.99*	0.00	0.00	6.99	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
22		6.99*	0.00	0.00	6.99	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
23		4.80*	0.00	0.00	4.80	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
																						\perp

Number of lines: 26

NOTES: Inlet N-Values = 0.016; Known Qs only; * Indicates Known Q added. All curb inlets are Horiz throat.

Project File: moonlight Phases 1C 1E.stm

Run Date: 7/27/2020

Inlet Report

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)			Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
24		4.58*	0.00	0.00	4.58	мн	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off
25		2.20*	0.00	2.20	0.00	Curb	4.0	4.00	0.00	0.00	0.00	Sag	2.00	0.050	0.020	0.000	0.31	12.55	0.31	12.55	0.0	Off
26		2.70*	0.00	0.00	2.70	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	Off

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Run Date: 7/27/2020

NOTES: Inlet N-Values = 0.016; Known Qs only; * Indicates Known Q added. All curb inlets are Horiz throat.

Line No.	Area Dn	Area Up	Byp Ln No	Coeff C1	Coeff C2	Coeff C3	Capac Full	Crit Depth	Cross SI, Sw	Cross SI, Sx	Curb Len	Defl Ang	Depth Dn	Depth Up	DnStm Ln No	Drng Area	Easting X	EGL Dn	EGL Up	Energy Loss
	(sqft)	(sqft)		(C)	(C)	(C)	(cfs)	(ft)	(ft/ft)	(ft/ft)	(ft)	(Deg)	(ft)	(ft)		(ac)	(ft)	(ft)	(ft)	(ft)
1	1.17	1.17	n/a	0.20	0.50	0.90	19.25	0.95				0.000	1.31	0.95**	Outfall	0.00	338.22	45.82	52.51	0.000
2	1.11	1.17	n/a	0.20	0.50	0.90	10.43	0.95				0.741	0.91	0.95**	1	0.00	553.20	52.51	54.67	0.000
3	0.39	0.39	2	0.20	0.50	0.90	19.17	0.41	0.050	0.020	16.76	-91.397	0.97	0.41**	2	0.00	553.13	54.41	54.06	0.000
4	1.03	1.03	n/a	0.20	0.50	0.90	10.51	0.85				-1.264	0.91	0.85**	2	0.00	665.00	54.61	55.68	0.000
5	0.41	0.52	Sag	0.20	0.50	0.90	10.44	0.50	0.050	0.020	5.00	-88.736	0.42	0.50**	4	0.00	665.22	66.71	66.96	0.000
6	0.87	0.87	n/a	0.20	0.50	0.90	10.57	0.74				1.264	0.81	0.74**	4	0.00	798.25	55.62	56.90	0.000
7	0.14	0.14	Sag	0.20	0.50	0.90	9.08	0.20	0.050	0.020	5.00	-59.036	0.72	0.20**	6	0.00	805.97	56.68	56.27	0.000
8	0.25	0.26	Sag	0.20	0.50	0.90	10.46	0.31	0.050	0.020	5.00	42.070	0.30	0.31**	7	0.00	864.09	56.31	56.92	0.000
9	0.76	0.76	n/a	0.20	0.50	0.90	10.54	0.67				-3.447	0.70	0.67**	6	0.00	929.20	56.87	58.16	0.000
10	0.76	0.76	9	0.20	0.50	0.90	14.85	0.67	0.050	0.020	11.00	-79.121	0.70	0.67**	9	0.00	929.91	58.16	58.23	0.000
11	1.77	1.77	n/a	0.20	0.50	0.90	21.72	1.37				-1.085	1.50	1.50	Outfall	0.00	569.39	53.76	56.88	3.123
12	3.14	3.14	n/a	0.20	0.50	0.90	12.42	1.26				0.000	2.00	2.00	11	0.00	854.34	56.34	57.18	0.839
13	0.32	0.41	12	0.20	0.50	0.90	10.50	0.43	0.050	0.020	5.00	-90.261	0.36	0.43**	12	0.00	854.15	69.23	69.38	0.000
14	3.14	3.14	n/a	0.20	0.50	0.90	12.38	1.23				0.000	2.00	2.00	12	0.00	997.72	57.40	57.79	0.392
15	0.59	0.75	Sag	0.20	0.50	0.90	10.50	0.66	0.050	0.020	5.00	31.347	0.55	0.66**	14	0.00	1021.04	71.78	72.16	0.000
16	0.01	0.01	n/a	0.20	0.50	0.90	10.50	0.04				0.000	0.62	0.04**	15	0.00	1034.00	71.92	71.49	0.000
17	3.14	3.14	n/a	0.20	0.50	0.90	12.34	1.12				0.000	2.00	2.00	14	0.00	1797.58	57.85	59.38	1.527
18	0.85	1.05	Sag	0.20	0.50	0.90	10.50	0.86	0.050	0.020	5.00	-90.727	0.73	0.86**	17	0.00	1796.50	68.72	69.19	0.000
19	3.14	3.14	n/a	0.20	0.50	0.90	12.30	0.99				1.129	2.00	2.00	17	0.00	2203.48	59.47	59.95	0.478
20	0.41	0.52	19	0.20	0.50	0.90	10.50	0.50	0.050	0.020	8.00	-92.737	0.42	0.50**	19	0.00	2201.27	67.04	67.59	0.000
21	3.14	2.95	n/a	0.20	0.50	0.90	12.29	0.94				0.497	2.00	1.78	19	0.00	3266.43	60.03	60.99	0.960
22	1.77	1.77	n/a	0.20	0.50	0.90	5.77	1.02				58.098	1.50	1.50	21	0.00	3278.51	61.22	61.32	0.103
23	1.77	1.77	n/a	0.20	0.50	0.90	5.61	0.84				-1.044	1.50	1.50	22	0.00	3289.76	61.41	61.45	0.044

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Dn	Up	Byp Ln No	Coeff C1	Coeff C2	Coeff C3	Capac Full	Crit Depth	Cross SI, Sw	Cross SI, Sx	Curb Len	Defl Ang	Depth Dn	Depth Up	DnStm Ln No	Drng Area	Easting X	EGL Dn	EGL Up	Energy Loss	
sqft)	(sqft)		(C)	(C)	(C)	(cfs)	(ft)	(ft/ft)	(ft/ft)	(ft)	(Deg)	(ft)	(ft)		(ac)	(ft)	(ft)	(ft)	(ft)	
1.77	1.77	n/a	0.20	0.50	0.90	5.83	0.82				-59.072	1.50	1.50	22	0.00	3528.50	61.40	61.87	0.476	
1.77	1.77	Sag	0.20	0.50	0.90	4.99	0.56	0.050	0.020	4.00	87.948	1.50	1.50	24	0.00	3528.69	61.90	61.90	0.002	
1.77	1.71	n/a	0.20	0.50	0.90	5.90	0.62				10.300	1.50	1.39	24	0.00	3715.69	61.91	62.03	0.117	
	1.77	1.77 1.77 1.77 1.77	1.77 1.77 n/a 1.77 1.77 Sag	1.77 1.77 n/a 0.20 1.77 1.77 Sag 0.20	1.77 1.77 n/a 0.20 0.50 1.77 1.77 Sag 0.20 0.50	1.77 1.77 n/a 0.20 0.50 0.90 1.77 1.77 Sag 0.20 0.50 0.90	1.77 1.77 n/a 0.20 0.50 0.90 5.83 1.77 1.77 Sag 0.20 0.50 0.90 4.99	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.82 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.82 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.82 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.82 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.50 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50 1.50	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.50 22 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50 1.50 24	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.50 22 0.00 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50 1.50 24 0.00	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.50 22 0.00 3528.50 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50 1.50 24 0.00 3528.69	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.50 22 0.00 3528.50 61.40 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50 1.50 24 0.00 3528.69 61.90	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.50 22 0.00 3528.50 61.40 61.87 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50 1.50 24 0.00 3528.69 61.90 61.90	1.77 1.77 n/a 0.20 0.50 0.90 5.83 0.8259.072 1.50 1.50 22 0.00 3528.50 61.40 61.87 0.476 1.77 1.77 Sag 0.20 0.50 0.90 4.99 0.56 0.050 0.020 4.00 87.948 1.50 1.50 24 0.00 3528.69 61.90 61.90 0.002

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Flow Rate	Sf Ave	Sf Dn	Grate Area	Grate Len	Grate Width	Gnd/Rim El Dn	Gnd/Rim El Up	Gutter Depth	Gutter Slope	Gutter Spread	Gutter Width	HGL Dn	HGL Up	HGL Jnct	HGL Jmp Dn	HGL Jmp Up	Incr CxA	Incr Q	Inlet Depth	Inlet Eff
(cfs)	(ft/ft)	(ft/ft)	(sqft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(cfs)	(ft)	(%)
6.00	0.000	0.000				52.70	64.43					45.41	52.11 j	52.11	45.75	45.60	0.00	6.00		
6.00	0.000	0.000				64.43	73.00					52.11	54.27	54.27			0.00	6.00		
1.20	0.000	0.000				73.00	0.00	0.17	0.020	5.43	2.00	54.27	53.91	53.91			0.00	1.20	0.20	100
4.87	0.000	0.000				73.00	75.00					54.27	55.33 j	55.33	54.32	54.26	0.00	4.87		
1.80	0.000	0.000				75.00	74.04	0.26	Sag	10.11	2.00	66.52	66.77	66.77			0.00	1.80	0.26	100
3.75	0.000	0.000				75.00	76.50					55.33	56.61 j	56.61	55.39	55.33	0.00	3.75		
0.30	0.000	0.000				76.50	0.00	0.12	Sag	3.06	2.00	56.61	56.20	56.20			0.00	0.30	0.12	100
0.70	0.000	0.000				0.00	0.00	0.17	Sag	5.38	2.00	56.20	56.81	56.81			0.00	0.70	0.17	100
3.10	0.000	0.000				76.50	77.29					56.61	57.90 j	57.90	56.71	56.65	0.00	3.10		
3.10	0.000	0.000				77.29	0.00	0.25	0.010	9.69	2.00	57.90	57.97 j	57.97	57.88	57.88	0.00	3.10	0.25	66
13.56	1.668	1.668				49.95	59.38					52.84	55.96	56.10			0.00	13.56		
12.27	0.294	0.294				59.38	73.45					56.10	56.94	57.18			0.00	12.27		
1.30	0.000	0.000				73.45	73.44	0.17	0.020	5.65	2.00	69.08	69.23	69.23			0.00	1.30	0.17	43
11.83	0.274	0.274				73.45	76.02					57.18	57.57	57.70			0.00	11.83		
3.00	0.000	0.000				76.02	75.88	0.34	Sag	14.21	2.00	71.53	71.91	71.91			0.00	3.00	0.34	100
0.01	0.000	0.000				75.88	76.74					71.91	71.48	71.48			0.00	0.01		
9.88	0.191	0.191				76.02	79.08					57.70	59.22	59.38			0.00	9.88		
5.00	0.000	0.000				79.08	79.50	0.46	Sag	19.98	2.00	68.37	68.84	68.84			0.00	5.00	0.46	100
7.76	0.118	0.118				79.08	78.86					59.38	59.86	59.95			0.00	7.76		
1.80	0.000	0.000				78.86	79.00	0.21	0.010	7.69	2.00	66.85	67.40	67.40			0.00	1.80	0.21	65
6.99	0.090	0.096				78.86	66.92					59.95	60.90	60.97			0.00	6.99		
6.99	0.443	0.443				66.92	66.15					60.97	61.08	61.29			0.00	6.99		
4.80	0.209	0.209				66.15	64.64					61.29	61.34	61.45			0.00	4.80		

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Flow Rate	Sf Ave	Sf Dn	Grate Area	Grate Len	Grate Width	Gnd/Rim El Dn	Gnd/Rim El Up	Gutter Depth	Gutter Slope	Gutter Spread	Gutter Width	HGL Dn	HGL Up	HGL Jnct	HGL Jmp Dn	HGL Jmp Up	Incr CxA	Incr Q	Inlet Depth	Inlet Eff
(cfs)	(ft/ft)	(ft/ft)	(sqft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		(cfs)	(ft)	(%)
4.58	0.190	0.190				66.15	64.43					61.29	61.77	61.87			0.00	4.58		
2.20	0.044	0.044				64.43	64.58	0.31	Sag	12.55	2.00	61.87	61.87	61.90			0.00	2.20	0.31	100
2.70	0.062	0.066				64.43	63.00					61.87	61.99	62.03			0.00	2.70		

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Inlet ID	Inlet Loc		Inlet Time	i Sys	i Inlet	Invert Dn	Invert Up	Jump Loc	Jump Len	Vel Hd Jmp Dn	Vel Hd Jmp Up	J-Loss Coeff	Junct Type	Known Q	Cost RCP	Cost CMP	Cost PVC
		(ft)	(min)	(in/hr)	(in/hr)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			(cfs)			
	Sag		0.0	0.00	0.00	44.10	51.16	21.00	4.73	0.41	1.11	0.15 z	МН	6.00	11,685	10,517	9,932
	Sag		0.0	0.00	0.00	51.20	53.32			0.00	0.00	1.00 z	МН	6.00	14,943	13,448	12,701
	On Grade		0.0	0.00	0.00	53.30	53.50			0.00	0.00	1.00 z	Curb	1.20	313	281	266
	Sag		0.0	0.00	0.00	53.36	54.48	11.18	4.26	0.34	0.48	1.00 z	МН	4.87	8,363	7,526	7,108
	Sag		0.0	0.00	0.00	66.10	66.27			0.00	0.00	1.00 z	Curb	1.80	963	866	818
	Sag		0.0	0.00	0.00	54.52	55.87	13.33	3.70	0.29	0.43	0.88 z	мн	3.75	9,975	8,978	8,479
	Sag		0.0	0.00	0.00	55.89	56.00			0.00	0.00	1.07 z	Curb	0.30	638	574	542
	Sag		0.0	0.00	0.00	55.90	56.50			0.00	0.00	1.00 z	Curb	0.70	2,036	1,832	1,731
	Sag		0.0	0.00	0.00	55.91	57.23	13.11	3.35	0.26	0.39	0.99 z	МН	3.10	9,825	8,843	8,351
	On Grade		0.0	0.00	0.00	57.20	57.30	0.50	2.50	0.25	0.31	1.00 z	Curb	3.10	278	250	236
New	Sag		0.0	0.00	0.00	43.05	51.06			0.00	0.00	0.15	МН	13.56	8,765	7,889	7,450
New	Sag		0.0	0.00	0.00	51.06	51.92			0.00	0.00	1.00	МН	12.27	21,168	19,051	17,992
	On Grade		0.0	0.00	0.00	68.72	68.80			0.00	0.00	1.00 z	Curb	1.30	440	396	374
	Sag		0.0	0.00	0.00	51.93	52.36			0.00	0.00	0.58	МН	11.83	12,155	10,940	10,332
	Sag		0.0	0.00	0.00	70.98	71.25			0.00	0.00	0.50 z	Curb	3.00	1,200	1,080	1,020
	Sag		0.0	0.00	0.00	71.29	71.44			0.00	0.00	1.00 z	МН	0.01	720	648	612
	Sag		0.0	0.00	0.00	52.37	54.75			0.00	0.00	1.00	МН	9.88	68,000	61,200	57,800
	Sag		0.0	0.00	0.00	67.64	67.98			0.00	0.00	1.00 z	Curb	5.00	2,020	1,818	1,717
	Sag		0.0	0.00	0.00	54.77	55.97			0.00	0.00	1.00	МН	7.76	34,468	31,021	29,297
	On Grade		0.0	0.00	0.00	66.43	66.90			0.00	0.00	1.00 z	Curb	1.80	2,980	2,682	2,533
	Sag		0.0	0.00	0.00	55.98	59.12			0.00	0.00	0.87	МН	6.99	79,432	71,488	67,517
	Sag		0.0	0.00	0.00	59.12	59.19			0.00	0.00	0.88	МН	6.99	1,165	1,049	990
	Sag		0.0	0.00	0.00	59.20	59.26			0.00	0.00	1.00	МН	4.80	1,023	920	869

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

NOTES: Known Qs only.; ** Critical depth

Inlet ID	Inlet Loc		Inlet Time	i Sys	i Inlet	Invert Dn	Invert Up	Jump Loc	Jump Len	Vel Hd Jmp Dn	Vel Hd Jmp Up	J-Loss Coeff	Junct Type	Known Q	Cost RCP	Cost CMP	Cost PVC
		(ft)	(min)	(in/hr)	(in/hr)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			(cfs)			
	Sag		0.0	0.00	0.00	59.20	59.97			0.00	0.00	1.00	МН	4.58	10,595	9,536	9,006
	Sag		0.0	0.00	0.00	59.98	59.99			0.00	0.00	1.00	Curb	2.20	280	252	238
	Sag		0.0	0.00	0.00	60.00	60.60			0.00	0.00	1.00	МН	2.70	6,500	5,850	5,525
oject Fi	le: moonlight	Phases 1	C 1E.stn	n	1				1	-		Nu	ımber of lines	: 26		Date	e: 7/27/20

NOTES: Known Qs only.; ** Critical depth

Storm Sewers

Line ID	Line Length	Line Size	Line Slope	Line Type	Local Depr	n-val Gutter	n-val Pipe	Minor Loss	Northing Y	Pipe Travel	Q Byp	Q Capt	Q Carry	Line Rise	Runoff Coeff	Line Span	Area A1	Area A2	Ar A
	(ft)	(in)	(%)		(in)			(ft)	(ft)	(min)	(cfs)	(cfs)	(cfs)	(in)	(C)	(in)	(ac)	(ac)	(8
PHASE 1 C MAIN	210.000	18	3.36	Cir			0.013	n/a	203.69	1.03				18	0.00	18	0.00	0.00	C
PHASE 1 C MAIN	215.000	18	0.99	Cir			0.013	0.41	200.91	1.06				18	0.00	18	0.00	0.00	(
A 58 Lateral 2 (No Profile)	6.000	18	3.33	Cir	0.33	0.013	0.013	n/a	206.91	0.15	0.00	1.20	0.00	18	0.00	18	0.00	0.00	(
PHASE 1 C MAIN	111.800	18	1.00	Cir			0.013	n/a	201.93	0.68				18	0.00	18	0.00	0.00	
A56 Lateral 3 16+25	17.200	18	0.99	Cir	0.0		0.013	n/a	219.13	0.28	0.00	1.80	0.00	18	0.00	18	0.00	0.00	
PHASE 1 C MAIN	133.260	18	1.01	Cir			0.013	n/a	200.21	1.05				18	0.00	18	0.00	0.00	
A55 Lateral 5 (No Profile)	14.700	18	0.75	Cir	0.0		0.013	n/a	212.71	1.44	0.00	0.30	0.00	18	0.00	18	0.00	0.00	
A55 Lateral 5 (No Profile)	60.530	18	0.99	Cir	0.0		0.013	n/a	229.62	2.55	0.00	0.70	0.00	18	0.00	18	0.00	0.00	
PHASE 1 C MAIN	131.100	18	1.01	Cir			0.013	n/a	206.40	1.25				18	0.00	18	0.00	0.00	
A 54 Lateral 6 (No Profile)	5.000	18	2.00	Cir	0.0	0.013	0.013	n/a	211.34	0.05	1.04	2.06	0.00	18	0.00	18	0.00	0.00	
EX 18 INCH	187.250	18	4.28	Cir			0.013	0.14	43.91	0.41				18	0.00	18	0.00	0.00	
PHASE 1 E MAIN	285.000	24	0.30	Cir			0.013	0.24	49.30	1.22				24	0.00	24	0.00	0.00	
LAT 14+96.96	8.000	18	1.00	Cir	0.0	0.013	0.013	n/a	57.30	0.18	0.73	0.57	0.00	18	0.00	18	0.00	0.00	
PHASE 1 E MAIN	143.410	24	0.30	Cir			0.013	0.13	52.02	0.63				24	0.00	24	0.00	0.00	
LAT 4 16+44.34	27.000	18	1.00	Cir	0.0		0.013	0.13	38.41	0.27	0.00	3.00	0.00	18	0.00	18	0.00	0.00	
LAT 4 16+44.34	15.000	18	1.00	Cir			0.013	n/a	30.85	44.18				18	0.00	18	0.00	0.00	
PHASE 1 E MAIN	800.000	24	0.30	Cir			0.013	0.15	67.17	4.24				24	0.00	24	0.00	0.00	
LAT 24+45.71	34.000	18	1.00	Cir	0.0		0.013	0.35	101.15	0.20	0.00	5.00	0.00	18	0.00	18	0.00	0.00	
PHASE 1 E MAIN	405.900	24	0.30	Cir			0.013	0.09	66.86	2.74				24	0.00	24	0.00	0.00	
LAT 28+53.97	47.000	18	1.00	Cir	0.0	0.013	0.013	n/a	113.81	0.77	0.64	1.16	0.00	18	0.00	18	0.00	0.00	
PHASE 1 E MAIN	1063.000	24	0.30	Cir			0.013	0.08	56.82	7.96				24	0.00	24	0.00	0.00	
BASIN LAT 38+94.76 B	23.200	18	0.30	Cir			0.013	0.21	37.01	0.10		****		18	0.00	18	0.00	0.00	
BASIN LAT 38+94.76 A	21.000	18	0.29	Cir			0.013	0.11	19.28	0.13				18	0.00	18	0.00	0.00	

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

(ft) (in) 50.000 18 4.430 18 90.000 18	(%) 0.31 0.23 0.32	Cir Cir Cir	(in) 0.0	 0.013	(ft) 0.10	(ft)	(min)	(cfs)	(cfs)	(cfs)	(in)	(C)	(in)	(ac)	(ac)	(ac)
4.430 18	0.23	Cir	0.0	0.013	0.10	00.00										ı ' '
						38.90	1.61				18	0.00	18	0.00	0.00	0.00
90.000 18	0.32	Cir		0.013	0.02	34.47	0.06	0.00	2.20	0.00	18	0.00	18	0.00	0.00	0.0
				 0.013	0.04	6.34	2.07				18	0.00	18	0.00	0.00	0.0
	1															
																(

Project File: moonlight Phases 1C 1E.stm

Number of lines: 26

Date: 7/27/2020

Тс	Throat Ht	Total Area	Total CxA	Total Runoff	Vel Ave	Vel Dn	Vel Hd Dn	Vel Hd Up	Vel Up	Cover Dn	Cover Up	Storage		
(min)	(in)	(ac)		(cfs)	(ft/s)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(cft)		
6.8		0.00	0.00	0.00	4.39	3.66	0.41	0.41	5.12	7.10	11.77	297.84		
5.7		0.00	0.00	0.00	5.25	5.38	0.41	0.41	5.12	11.73	18.18	245.90		
0.0	4.0	0.00	0.00	0.00	2.04	1.00	0.15	0.15	3.07	18.20	n/a	4.75		
5.0		0.00	0.00	0.00	4.55	4.37	0.35	0.35	4.73	18.14	19.02	119.87		
0.0	6.0	0.00	0.00	0.00	3.93	4.42	0.18	0.18	3.45	7.40	6.27	7.98		
4.0		0.00	0.00	0.00	4.09	3.87	0.29	0.29	4.32	18.98	19.13	122.43		
2.5	6.0	0.00	0.00	0.00	1.24	0.36	0.07	0.07	2.11	19.11	n/a	6.91		
0.0	6.0	0.00	0.00	0.00	2.70	2.76	0.11	0.11	2.65	n/a	n/a	15.67		
0.0		0.00	0.00	0.00	3.95	3.84	0.26	0.26	4.06	19.09	18.56	102.93		
0.0	6.0	0.00	0.00	0.00	3.95	3.84	0.26	0.26	4.06	18.59	n/a	3.93		
46.3		0.00	0.00	0.00	7.67	7.67	0.92	0.92	7.67	5.40	6.82	330.83		
45.1		0.00	0.00	0.00	3.91	3.91	0.24	0.24	3.91	6.32	19.53	895.18		
0.0	6.0	0.00	0.00	0.00	3.59	4.04	0.15	0.15	3.14	3.23	3.14	2.94		
44.4		0.00	0.00	0.00	3.77	3.77	0.22	0.22	3.77	19.52	21.66	450.45		
44.2	6.0	0.00	0.00	0.00	4.57	5.12	0.25	0.25	4.02	3.54	3.13	17.97		
0.0		0.00	0.00	0.00	0.45	0.01	0.01	0.01	0.89	3.09	3.80	4.59		
14.5		0.00	0.00	0.00	3.15	3.15	0.15	0.15	3.14	21.65	22.33	2512.78		
0.0	6.0	0.00	0.00	0.00	5.32	5.87	0.35	0.35	4.77	9.94	10.02	32.30		
11.7		0.00	0.00	0.00	2.47	2.47	0.09	0.09	2.47	22.31	20.89	1274.92		
0.0	6.0	0.00	0.00	0.00	3.94	4.44	0.18	0.18	3.45	10.93	10.60	21.78		
3.8		0.00	0.00	0.00	2.30	2.23	0.08	0.09	2.37	20.88	5.80	3305.20		
3.7		0.00	0.00	0.00	3.96	3.96	0.24	0.24	3.96	6.30	5.46	40.99		
0.0		0.00	0.00	0.00	2.72	2.72	0.11	0.11	2.72	5.45	3.88	37.10		
Project	File: moo	l nlight Ph	nases 10	L 1E.stm									Number of lines: 26	Date: 7/27/2020

Тс	Throat Ht	Total Area	Total CxA	Total Runoff	Vel Ave	Vel Dn	Vel Hd Dn	Vel Hd Up	Vel Up	Cover Dn	Cover Up	Storage		
(min)	(in)	(ac)		(cfs)	(ft/s)	(ft/s)	(ft)	(ft)	(ft/s)	(ft)	(ft)	(cft)		
2.1		0.00	0.00	0.00	2.59	2.59	0.10	0.10	2.59	5.45	2.96	441.70		
0.0	4.0	0.00	0.00	0.00	1.25	1.25	0.02	0.02	1.24	2.95	3.09	7.83		
0.0		0.00	0.00	0.00	1.56	1.53	0.04	0.04	1.58	2.93	0.90	333.77		
Project I	File: moo	nlight Ph	nases 10	1E.stm									Number of lines: 26	Date: 7/27/2020

NOTES: ** Critical depth

Hydraulic Grade Line Computations

Line	Size	Q	Downstream								Len	Upstream									Check		Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		VeI	Vel head (ft)	EGL elev	Sf (%)	(ft)	Invert	HGL elev (ft)	Depth	Area	Vel	Vel head (ft)	EGL elev	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	(ft)
	(111)	(CIS)	(11)	(11)	(11)	(sqft)	(IUS)	(11)	(ft)	(%)	(11)	(ft)	(11.)	(ft)	(sqft)	(IUS)	(11)	(ft)	(70)	(70)	(11)	(K)	(11)
1	18	6.00	44.10	45.41	1.31	1.17	3.66	0.41	45.82	0.000	210.00	051.16	52.11 j	0.95**	1.17	5.12	0.41	52.51	0.000	0.000	n/a	0.15	0.06
2	18	6.00	51.20	52.11	0.91	1.11	5.38	0.41	52.51	0.000	215.00	053.32	54.27	0.95**	1.17	5.12	0.41	54.67	0.000	0.000	n/a	1.00	0.41
3	18	1.20	53.30	54.27	0.97	0.39	1.00	0.15	54.41	0.000	6.000	53.50	53.91	0.41**	0.39	3.07	0.15	54.06	0.000	0.000	n/a	1.00	n/a
4	18	4.87	53.36	54.27	0.91	1.03	4.37	0.35	54.61	0.000	111.80	054.48	55.33 j	0.85**	1.03	4.73	0.35	55.68	0.000	0.000	n/a	1.00	0.35
5	18	1.80	66.10	66.52	0.42*	0.41	4.42	0.18	66.71	0.000	17.200	66.27	66.77	0.50**	0.52	3.45	0.18	66.96	0.000	0.000	n/a	1.00	n/a
6	18	3.75	54.52	55.33	0.81	0.87	3.87	0.29	55.62	0.000	133.26	055.87	56.61 j	0.74**	0.87	4.32	0.29	56.90	0.000	0.000	n/a	0.88	n/a
7	18	0.30	55.89	56.61	0.72	0.14	0.36	0.07	56.68	0.000	14.700	56.00	56.20	0.20**	0.14	2.11	0.07	56.27	0.000	0.000	n/a	1.07	n/a
8	18	0.70	55.90	56.20	0.30	0.25	2.76	0.11	56.31	0.000	60.530	56.50	56.81	0.31**	0.26	2.65	0.11	56.92	0.000	0.000	n/a	1.00	n/a
9	18	3.10	55.91	56.61	0.70	0.76	3.84	0.26	56.87	0.000	131.10	057.23	57.90 j	0.67**	0.76	4.06	0.26	58.16	0.000	0.000	n/a	0.99	n/a
10	18	3.10	57.20	57.90	0.70	0.76	3.84	0.26	58.16	0.000	5.000	57.30	57.97 j	0.67**	0.76	4.06	0.26	58.23	0.000	0.000	n/a	1.00	n/a
11	18	13.56	43.05	52.84	1.50	1.77	7.67	0.92	53.76	1.668	187.25	051.06	55.96	1.50	1.77	7.67	0.92	56.88	1.668	1.668	3.123	0.15	0.14
12	24	12.27	51.06	56.10	2.00	3.14	3.91	0.24	56.34	0.294	285.00	051.92	56.94	2.00	3.14	3.91	0.24	57.18	0.294	0.294	0.839	1.00	0.24
13	18	1.30	68.72	69.08	0.36*	0.32	4.04	0.15	69.23	0.000	8.000	68.80	69.23	0.43**	0.41	3.14	0.15	69.38	0.000	0.000	n/a	1.00	n/a
14	24	11.83	51.93	57.18	2.00	3.14	3.77	0.22	57.40	0.274	143.41	052.36	57.57	2.00	3.14	3.77	0.22	57.79	0.274	0.274	0.392	0.58	0.13
15	18	3.00	70.98	71.53	0.55*	0.59	5.12	0.25	71.78	0.000	27.000	71.25	71.91	0.66**	0.75	4.02	0.25	72.16	0.000	0.000	n/a	0.50	0.13
16	18	0.01	71.29	71.91	0.62	0.01	0.01	0.01	71.92	0.000	15.000	71.44	71.48	0.04**	0.01	0.89	0.01	71.49	0.000	0.000	n/a	1.00	n/a
17	24	9.88	52.37	57.70	2.00	3.14	3.15	0.15	57.85	0.191	800.00	054.75	59.22	2.00	3.14	3.14	0.15	59.38	0.191	0.191	1.527	1.00	0.15
18	18	5.00	67.64	68.37	0.73*	0.85	5.87	0.35	68.72	0.000	34.000	67.98	68.84	0.86**	1.05	4.77	0.35	69.19	0.000	0.000	n/a	1.00	0.35
19	24	7.76	54.77	59.38	2.00	3.14	2.47	0.09	59.47	0.118	405.90	0 55.97	59.86	2.00	3.14	2.47	0.09	59.95	0.118	0.118	0.478	1.00	0.09
20	18	1.80	66.43	66.85	0.42*	0.41	4.44	0.18	67.04	0.000	47.000	66.90	67.40	0.50**	0.52	3.45	0.18	67.59	0.000	0.000	n/a	1.00	n/a
21	24	6.99	55.98	59.95	2.00	3.14	2.23	0.08	60.03	0.096	1063.0	06 9.12	60.90	1.78	2.95	2.37	0.09	60.99	0.085	0.090	0.960	0.87	0.08
22	18	6.99	59.12	60.97	1.50	1.77	3.96	0.24	61.22	0.443	23.200	59.19	61.08	1.50	1.77	3.96	0.24	61.32	0.443	0.443	0.103	0.88	0.21
		1	1			1	1	1	1		1	1					1		1	1	1		-

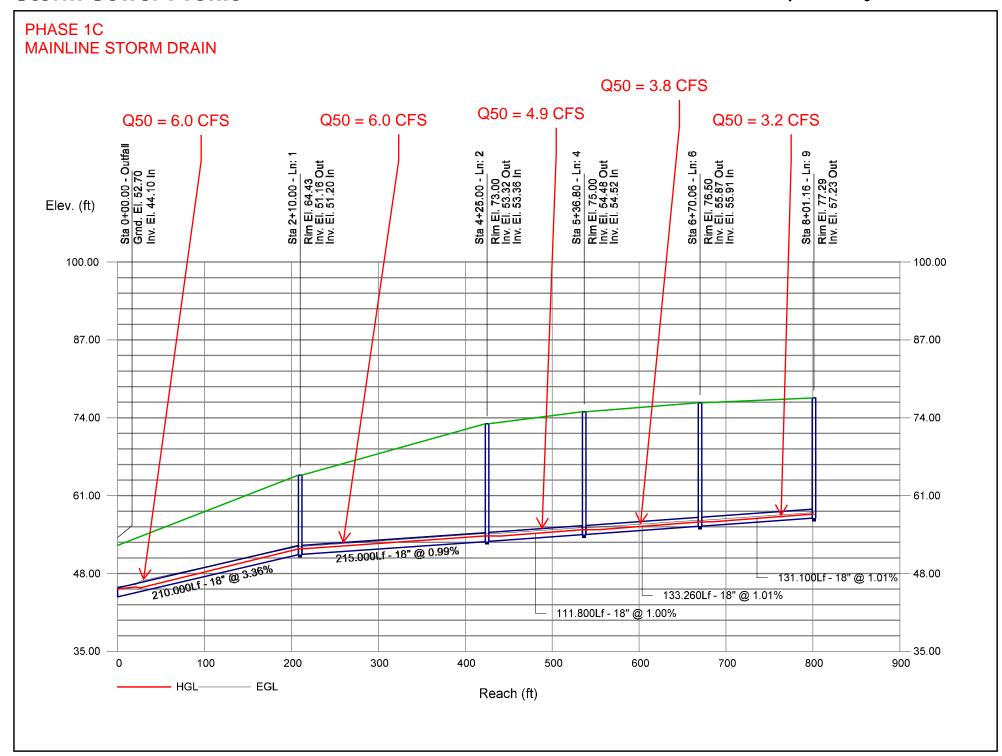
Project File: moonlight Phases 1C 1E.stm

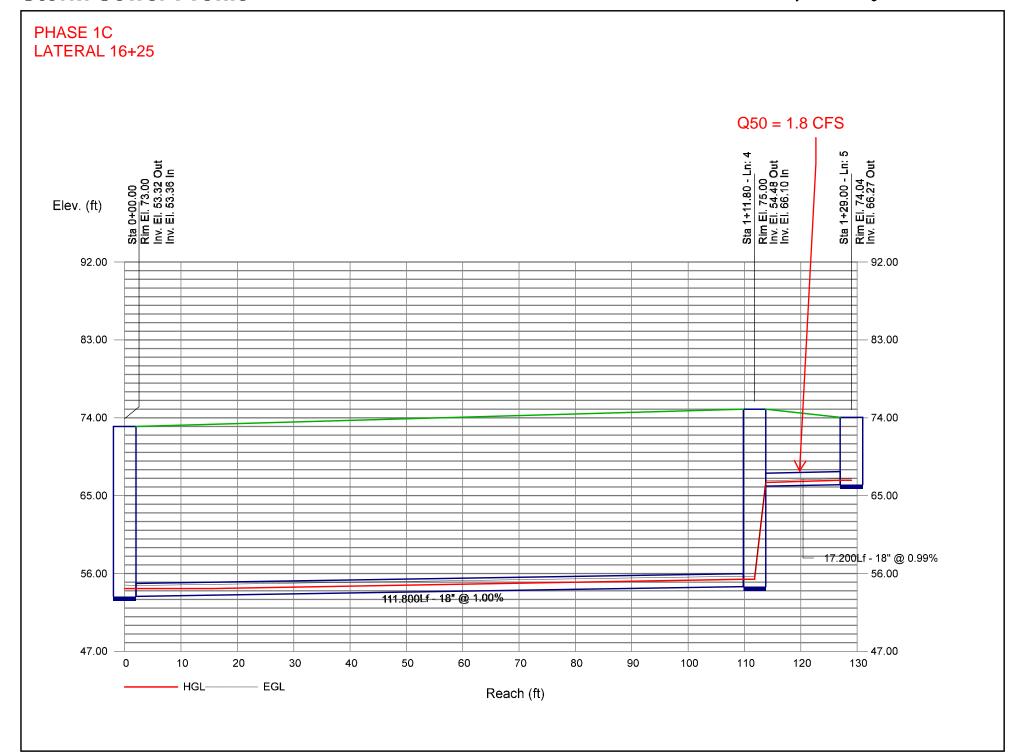
Number of lines: 26

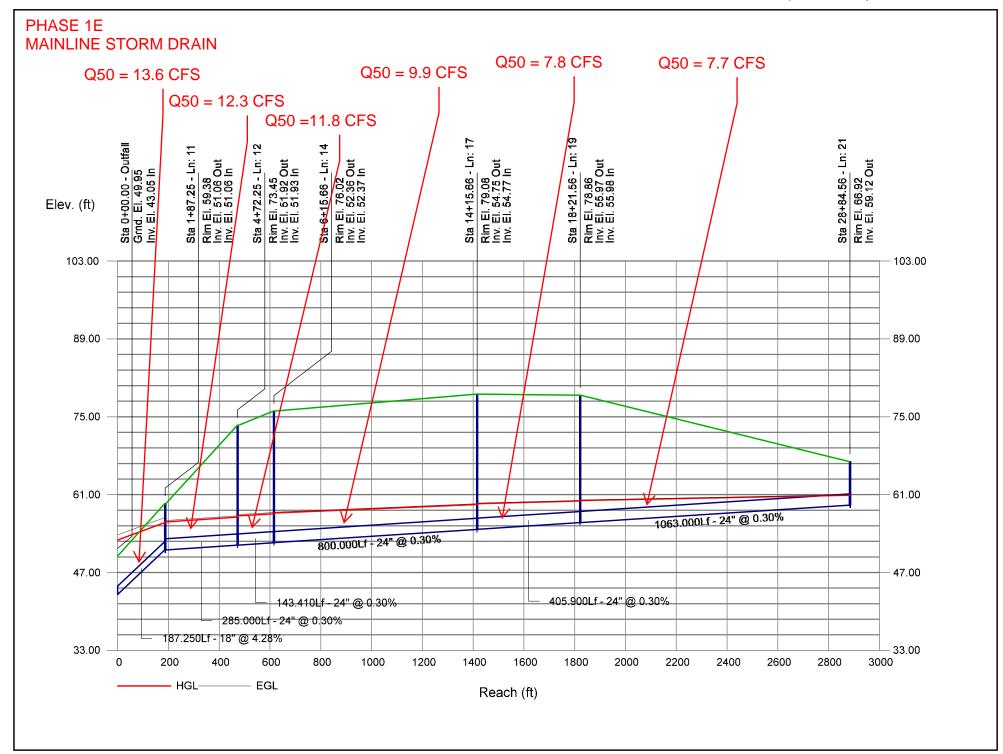
Run Date: 7/27/2020

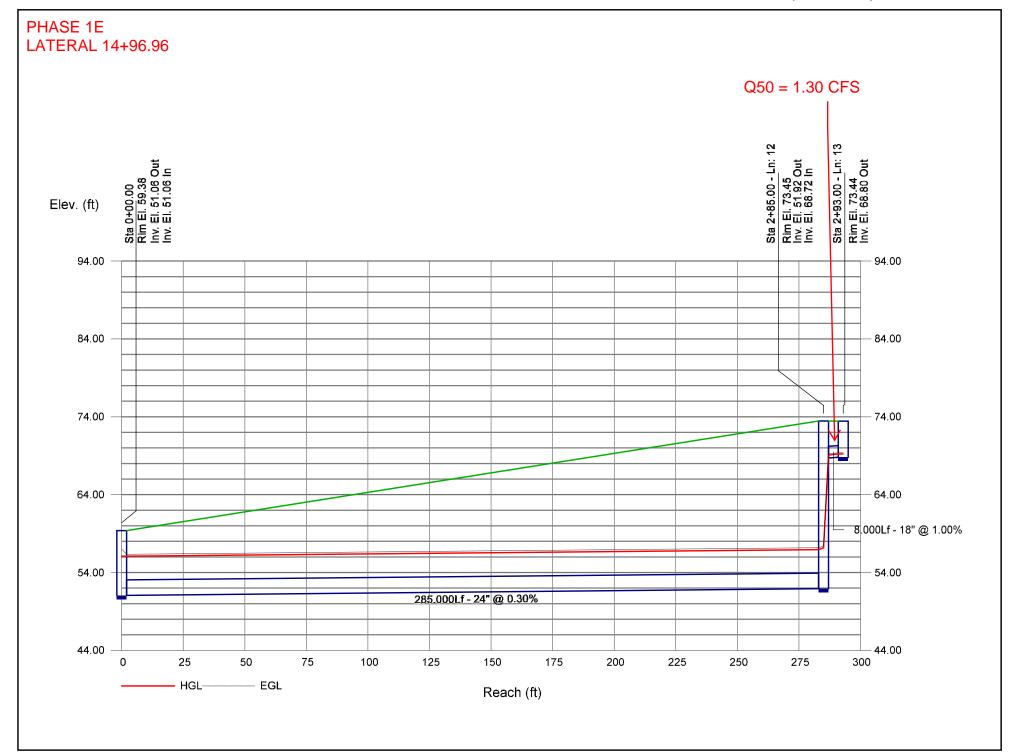
Notes: * Normal depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

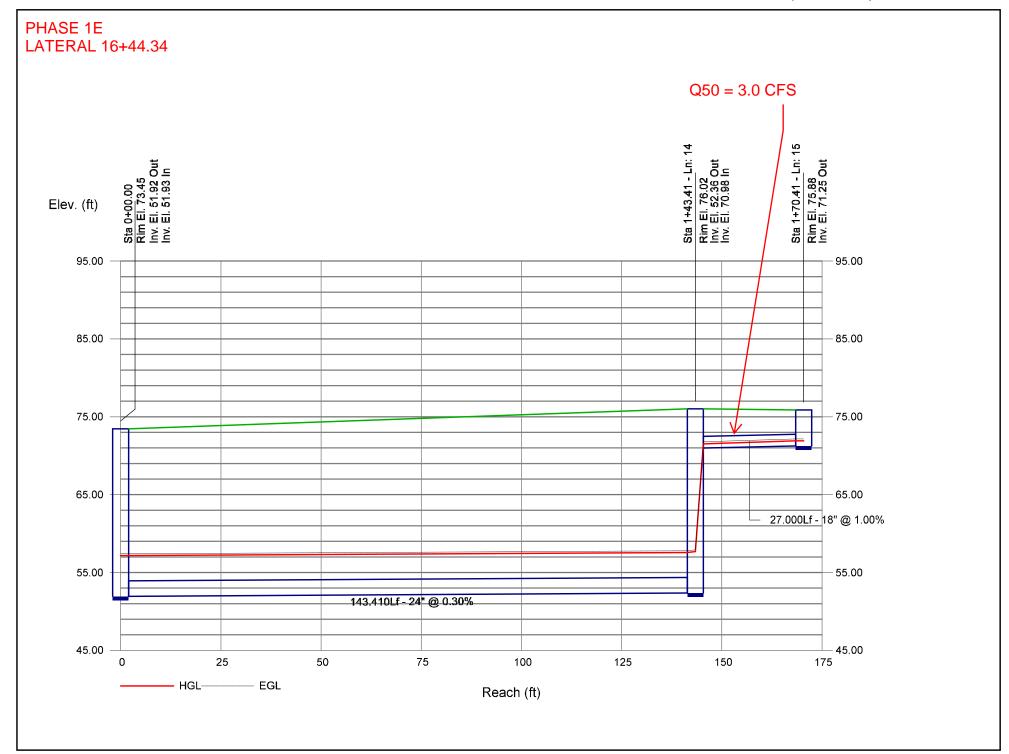
Hydraulic Grade Line Computations

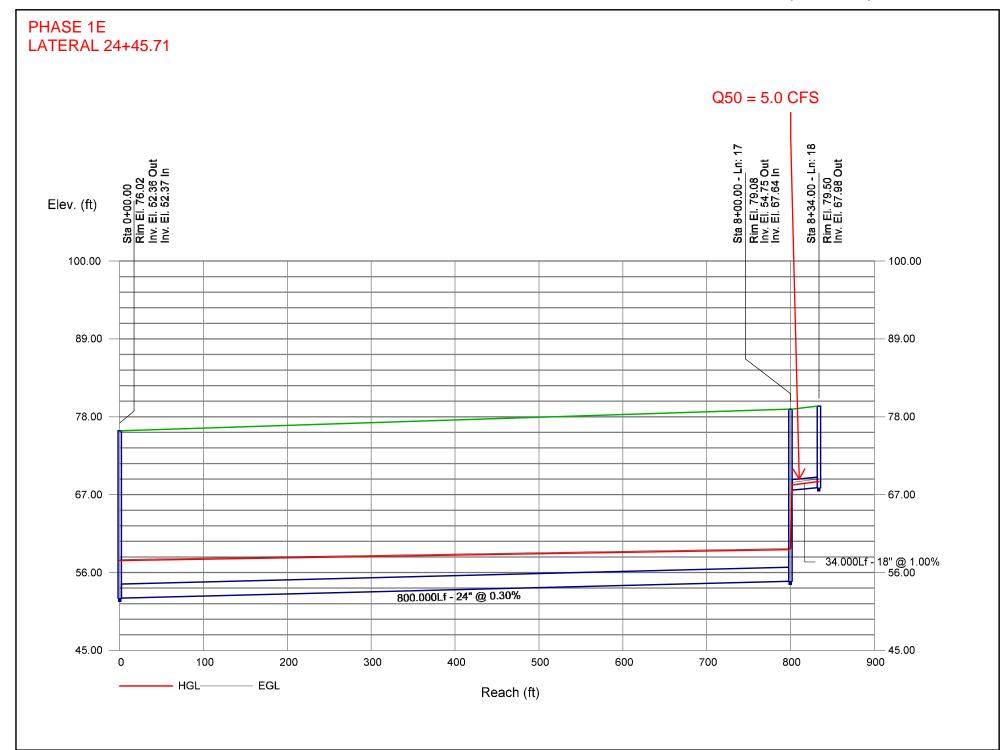

			Downstream								Len	Upstream Check JL											Minor
			Invert elev	HGL elev (ft)	Depth	Area	Vel	head	EGL elev	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth	Area	Vel (ft/s)	Vel head	EGL elev	Sf	Ave Sf	Enrgy loss	coeff (K)	loss
			(ft)		(ft)	(sqft) (ft/s	(ft/s)		(ft)		(ft)			(ft)	(sqft)		(ft)	(ft)			(ft)		(ft)
23	18	4.80	59.20	61.29	1.50	1 77	2.72	0.11	61.41	0.209	21.000	50.26	61.34	1.50	1.77	2.72	0.11	61.45	0.209	0.209	0.044	1.00	0.11
24		4.58	59.20	61.29		1.77	2.59	0.11	61.40	0.190	250.00		61.77	1.50	1.77	2.59	0.10	61.87	0.190		0.476		0.10
25		2.20	59.98	61.87	1.50		1.25	0.02	61.90	0.044	4.430		61.87	1.50	1.77	1.24	0.02	61.90	0.044	0.044	0.002	1.00	0.02
26		2.70	60.00	61.87	1.50		1.53	0.04	61.91	0.066	190.00		61.99	1.39	1.71	1.58	0.04	62.03		0.062			0.04

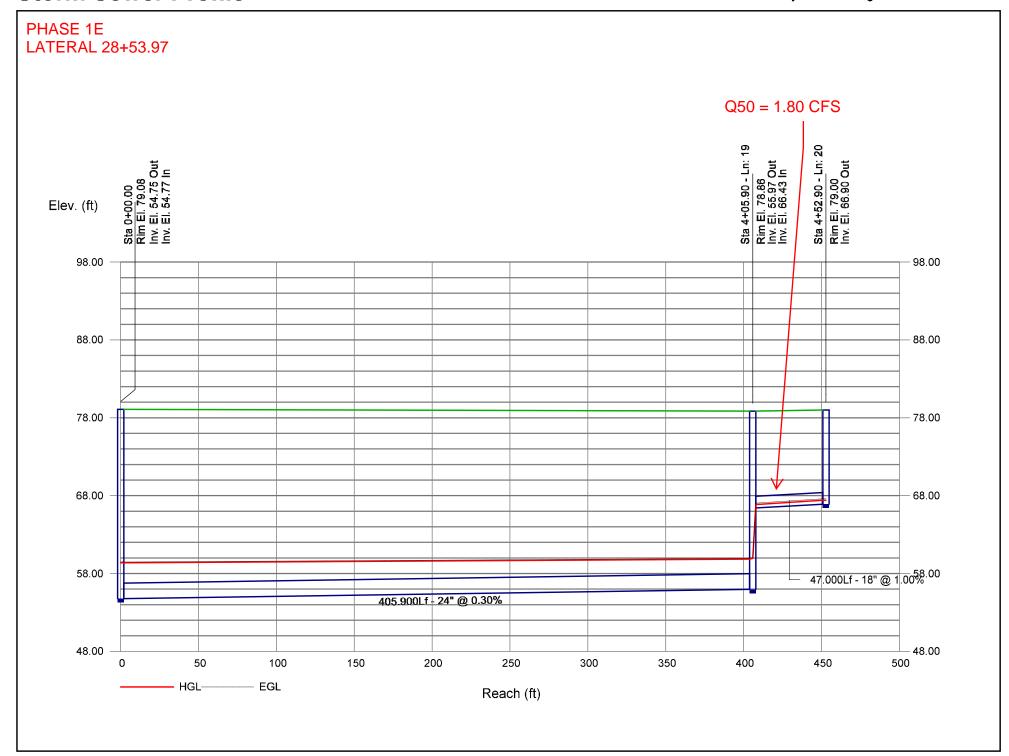

Number of lines: 26

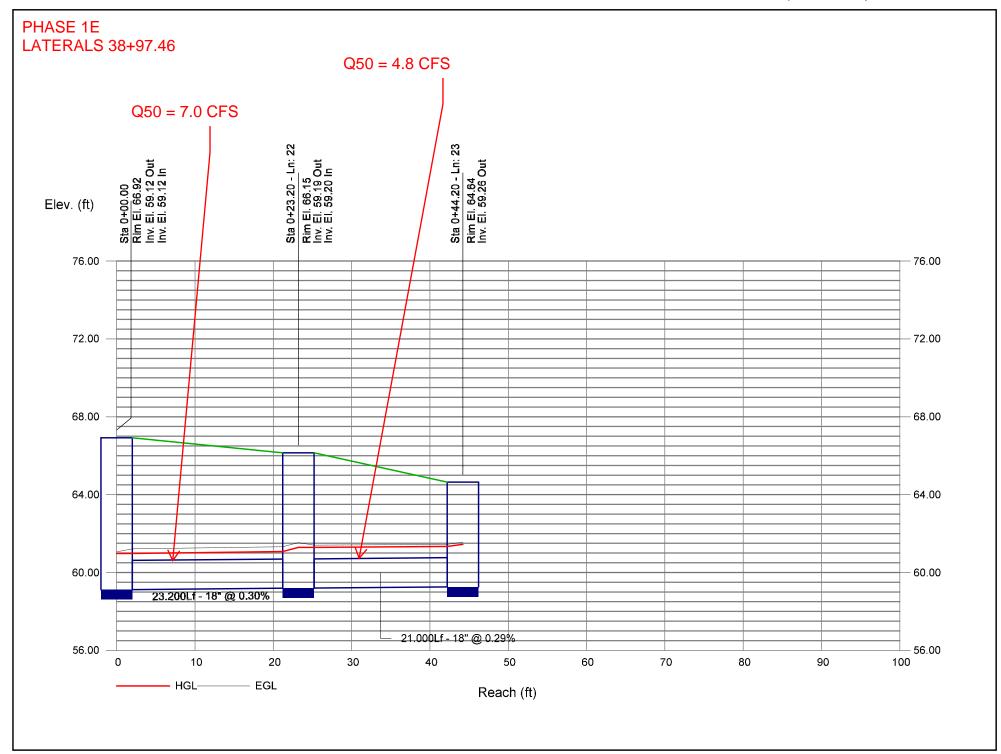

Notes: * Normal depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

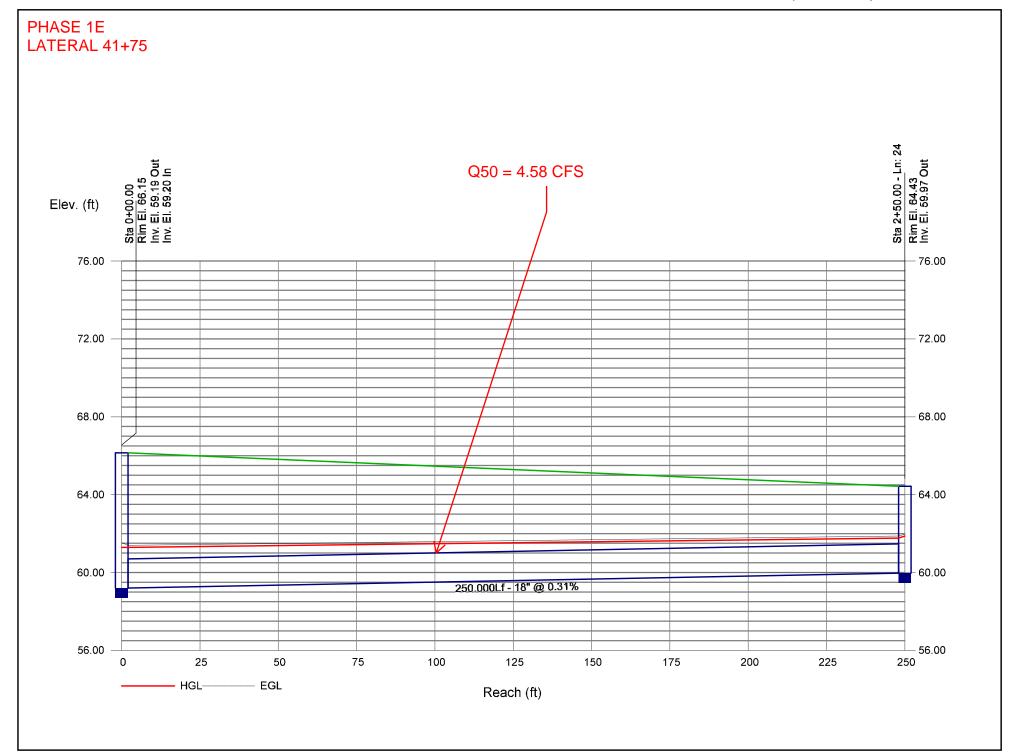

Project File: moonlight Phases 1C 1E.stm

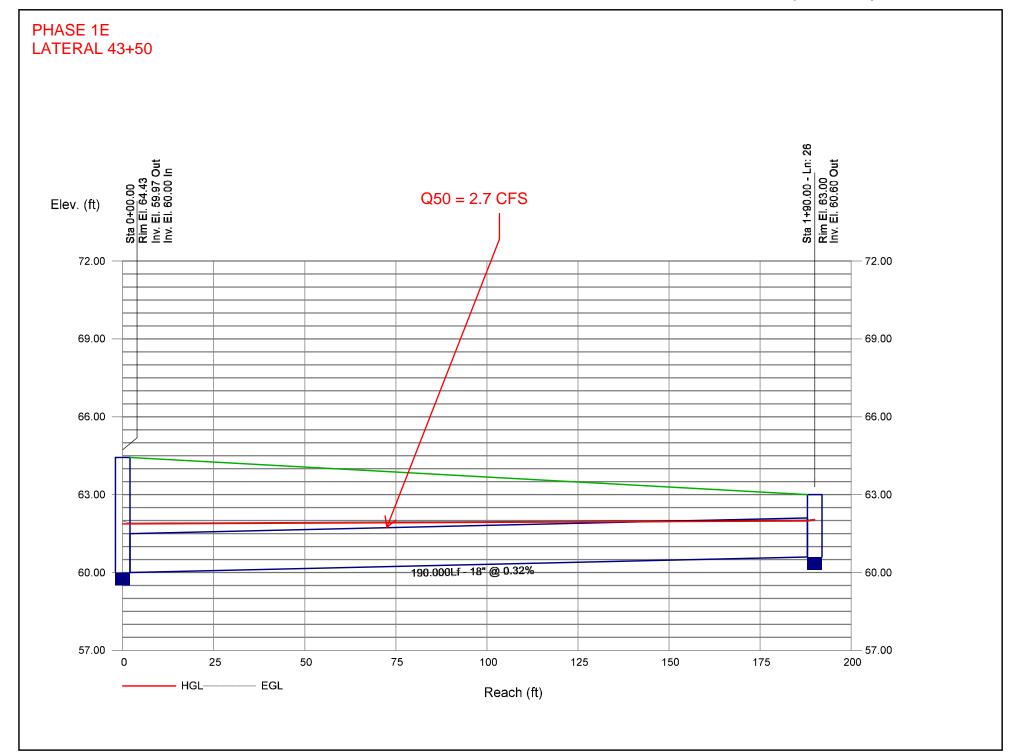

Run Date: 7/27/2020

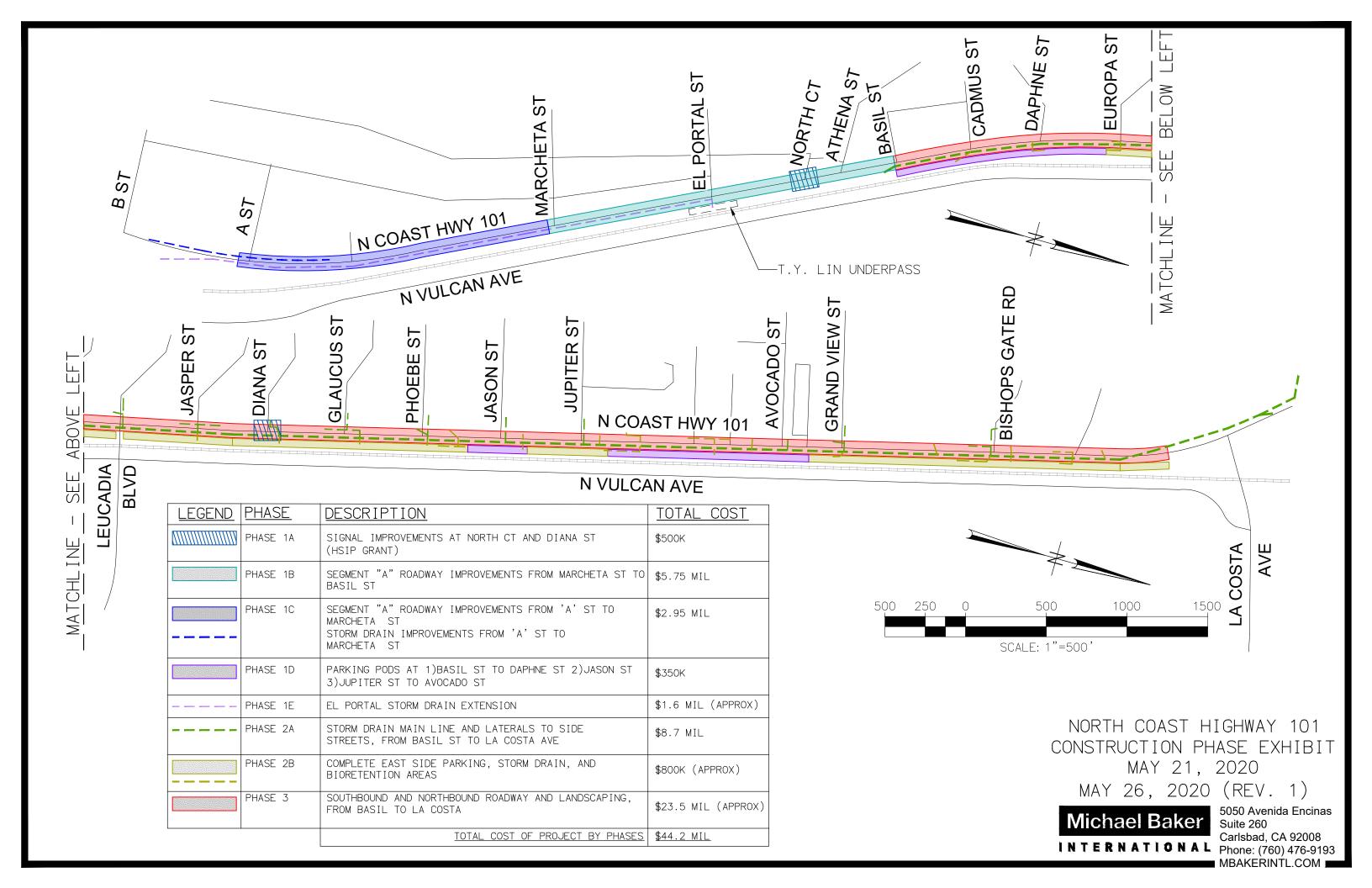


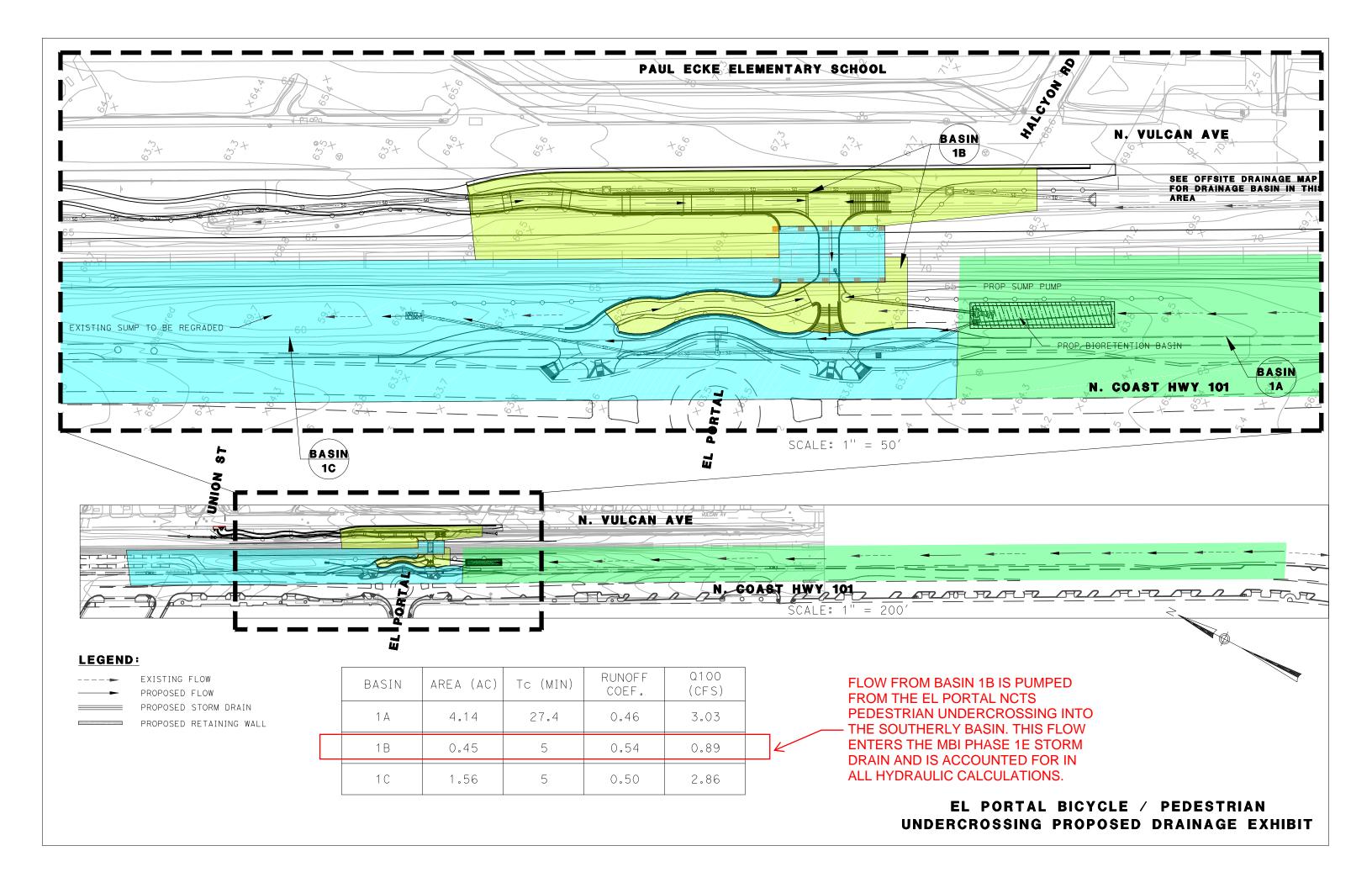











Appendix G – NCH 101 Construction Phase Exhibit

Michael Baker

Appendix H – Excerpts from T.Y. Lin's El Portal Drainage Study

Michael Baker

